TY - JOUR T1 - Hydrogen-Driven Perpendicular Magnetic Anisotropy at the Co/Ir Interface TT - Hidrojen Destekli Dik Manyetik Anizotropi: Co/Ir Arayüzü Örneği AU - Değer, Caner PY - 2025 DA - October Y2 - 2025 DO - 10.29130/dubited.1704212 JF - Duzce University Journal of Science and Technology JO - DÜBİTED PB - Duzce University WT - DergiPark SN - 2148-2446 SP - 1583 EP - 1591 VL - 13 IS - 4 LA - en AB - Magnetic anisotropy at the nanoscale is a key property for developing advanced spintronic devices, information storage systems, and gas sensors. In this study, we investigate the hydrogen-assisted perpendicular magnetic anisotropy (PMA) in the Co/Ir interface through first-principles density functional theory calculations. Initially, the Co/Ir system exhibits in-plane magnetic anisotropy (IMA). Upon hydrogen absorption, a significant increase in magnetic anisotropy energy is observed, indicating a transition from IMA to PMA. This behavior contrasts sharply with the Co/Rh system, where hydrogen absorption leads to a reduction in magnetic anisotropy energy and a switch from PMA to IMA. The underlying mechanism of these transitions is linked to the hybridization of atomic orbitals at the interface. These findings highlight the potential of hydrogenation as a tool to reversibly control magnetic anisotropy in Co/Ir interfaces, paving the way for new applications in spintronics and gas sensing technologies. KW - Perpendicular Magnetic Anisotropy KW - Hydrogen Absorption KW - Density Functional Theory (DFT) KW - Spintronics N2 - Manyetik anizotropi, ileri düzey spintronik aygıtlar, bilgi depolama sistemleri ve gaz sensörlerinin geliştirilmesi için anahtar bir özelliktir. Bu çalışmada, Co/Ir arayüzünde hidrojen destekli dikey manyetik anizotropi (PMA) olgusu, birinci ilke yoğunluk fonksiyonel teorisi (DFT) hesaplamaları kullanılarak incelenmiştir. Başlangıçta, Co/Ir sistemi düzlemsel manyetik anizotropi (IMA) göstermektedir. Ancak hidrojen absorbsiyonunun ardından, manyetik anizotropi enerjisinde belirgin bir artış gözlemlenmiş ve sistemin IMA'dan PMA'ya geçtiği tespit edilmiştir. Bu davranış, hidrojen absorbsiyonunun PMA'dan IMA'ya geçişe neden olduğu Co/Rh sistemi ile zıtlık göstermektedir. Bu geçişlerin altında yatan mekanizma, arayüzdeki atomik orbitallerin hibritleşmesiyle ilişkilidir. Elde edilen bulgular, Co/Ir arayüzlerinde manyetik anizotropinin hidrojen yoluyla geri dönüşümlü şekilde kontrol edilebileceğini göstererek, bu sistemi spintronik ve gaz algılama teknolojilerinde potansiyel olarak kullanılabilir hale getirmektedir. CR - Aksu, P., Deger, C., Yavuz, I., & Yildiz, F. (2020). Strain-promoted perpendicular magnetic anisotropy in Co–Rh alloys. Applied Physics Letters, 116(21), Article 212402. https://doi.org/10.1063/5.0010606 CR - Bauer, U., Yao, L., Tan, A. J., Agrawal, P., Emori, S., Tuller, H. L., van Dijken, S., & Beach, G. S. D. (2015). Magneto-ionic control of interfacial magnetism. Nature Materials, 14(2), 174–181. https://doi.org/10.1038/nmat4134 CR - Bi, C., Liu, Y., Newhouse-Illige, T., Xu, M., Rosales, M., Freeland, J. W., Mryasov, O., Zhang, S., te Velthuis, S. G. E., & Wang, W. (2014). Reversible control of Co magnetism by voltage-induced oxidation. Physical Review Letters, 113(26), Article 267202. https://doi.org/10.1103/PhysRevLett.113.267202 CR - Broddefalk, A., Nordblad, P., Blomqvist, P., & Isberg, P. (2002). In-plane magnetic anisotropy of Fe/V(001) superlattices. Journal of Magnetism and Magnetic Materials, 241(2–3), 260–270. https://doi.org/10.1016/S0304-8853(01)01379-8 CR - Capku, Z., Deger, C., Aksu, P., & Yildiz, F. (2020). Origin of perpendicular magnetic anisotropy in yttrium iron garnet thin films grown on Si(100). IEEE Transactions on Magnetics, 56(11), 1–6. https://doi.org/10.1109/TMAG.2020.3021646 CR - Causer, G. L., Kostylev, M., Cortie, D. L., Lueng, C., Callori, S. J., Wang, X. L., & Klose, F. (2019). In operando study of hydrogen-induced switching of magnetic anisotropy at the Co/Pd interface for magnetic hydrogen gas sensing. ACS Applied Materials & Interfaces, 11(38), 35420–35428. https://doi.org/10.1021/acsami.9b10535 CR - Chang, C. S., Kostylev, M., & Ivanov, E. (2013). Metallic spintronic thin film as a hydrogen sensor. Applied Physics Letters, 102(14), Article 142405. https://doi.org/10.1063/1.4800923 CR - Deger, C. (2020a). Multibit racetrack memory. Nanotechnology, 31(49), Article 495209. https://doi.org/10.1088/1361-6528/abb42e CR - Deger, C. (2020b). Strain-enhanced Dzyaloshinskii–Moriya interaction at Co/Pt interfaces. Scientific Reports, 10(1), Article 12314. https://doi.org/10.1038/s41598-020-69360-w CR - Deger, C., Yavuz, I., & Yildiz, F. (2019). Impact of interlayer coupling on magnetic skyrmion size. Journal of Magnetism and Magnetic Materials, 489, Article 165399. https://doi.org/10.1016/j.jmmm.2019.165399 CR - Demiroglu, E., Hancioglu, K., Yavuz, I., Avci, C. O., & Deger, C. (2024). Oscillatory behavior of interlayer Dzyaloshinskii–Moriya interaction by spacer thickness variation. Physical Review B, 109(14), Article 144422. https://doi.org/10.1103/PhysRevB.109.144422 CR - Dieny, B., & Chshiev, M. (2017). Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications. Reviews of Modern Physics, 89(2), Article 025008. https://doi.org/10.1103/RevModPhys.89.025008 CR - Erkovan, M., Deger, C., Cardoso, S., & Kilinc, N. (2022). Hydrogen-sensing properties of ultrathin Pt–Co alloy films. Chemosensors, 10(12), Article 512. https://doi.org/10.3390/chemosensors10120512 CR - Gilbert, D. A., Grutter, A. J., Arenholz, E., Liu, K., Kirby, B. J., Borchers, J. A., & Maranville, B. B. (2016). Structural and magnetic depth profiles of magneto-ionic heterostructures beyond the interface limit. Nature Communications, 7, Article 12264. https://doi.org/10.1038/ncomms12264 CR - Harumoto, T., Song, J., Lin, Y. H., & Shi, J. (2025). Nanometer-thick palladium–cobalt alloy films for hydrogen sensors and hydrogen-mediated devices. ACS Applied Nano Materials, 8(14), 7154–7162. https://doi.org/10.1021/acsanm.5c00392 CR - Hellman, F., Hoffmann, A., Tserkovnyak, Y., Beach, G. S. D., Fullerton, E. E., Leighton, C., MacDonald, A. H., Ralph, D. C., Arena, D. A., Dürr, H. A., Fischer, P., Grollier, J., Heremans, J. P., Jungwirth, T., Kimel, A. V., Koopmans, B., Krivorotov, I. N., May, S. J., Petford-Long, A. K., … Zink, B. L. (2017). Interface-induced phenomena in magnetism. Reviews of Modern Physics, 89(2), Article 025006. https://doi.org/10.1103/RevModPhys.89.025006 CR - Hsu, C.-C., Chang, P.-C., Chen, Y.-H., Liu, C.-M., Wu, C.-T., Yen, H.-W., & Lin, W.-C. (2018). Reversible 90-degree rotation of Fe magnetic moment using hydrogen. Scientific Reports, 8(1), Article 3251. https://doi.org/10.1038/s41598-018-21712-3 CR - Klyukin, K., Beach, G., & Yildiz, B. (2020). Hydrogen tunes magnetic anisotropy by affecting local hybridization at the interface of a ferromagnet with nonmagnetic metals. Physical Review Materials, 4(10), Article 104416. https://doi.org/10.1103/PhysRevMaterials.4.104416 CR - Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169 CR - Kresse, G., & Hafner, J. (1993). Ab initio molecular dynamics for liquid metals. Physical Review B, 47(1), 558–561. https://doi.org/10.1103/PhysRevB.47.558 CR - Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758–1775. https://doi.org/10.1103/PhysRevB.59.1758 CR - Lau, Y.-C., Chi, Z., Taniguchi, T., Kawaguchi, M., Shibata, G., Kawamura, N., Suzuki, M., Fukami, S., Fujimori, A., Ohno, H., & Hayashi, M. (2019). Giant perpendicular magnetic anisotropy in Ir/Co/Pt multilayers. Physical Review Materials, 3(10), Article 104419. https://doi.org/10.1103/PhysRevMaterials.3.104419 CR - Maruyama, T., Shiota, Y., Nozaki, T., Ohta, K., Toda, N., Mizuguchi, M., Tulapurkar, A. A., Shinjo, T., Shiraishi, M., Mizukami, S., Ando, Y., & Suzuki, Y. (2009). Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nature Nanotechnology, 4(3), 158–161. https://doi.org/10.1038/nnano.2008.406 CR - Munbodh, K., Perez, F. A., & Lederman, D. (2012). Changes in magnetic properties of Co/Pd multilayers induced by hydrogen absorption. Journal of Applied Physics, 111(12), Article 123919. http://dx.doi.org/10.1063/1.4729797 CR - Okabayashi, J., Miura, Y., & Munekata, H. (2018). Anatomy of interfacial spin–orbit coupling in Co/Pd multilayers using x-ray magnetic circular dichroism and first-principles calculations. Scientific Reports, 8(1), Article 8303. https://doi.org/10.1038/s41598-018-26195-w CR - Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865 CR - Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., Zhou, X., & Burke, K. (2008). Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letters, 100(13), Article 136406. https://doi.org/10.1103/PhysRevLett.100.136406 CR - Sisman, O., Erkovan, M., & Kilinc, N. (2024). Chapter 5.1 – Hydrogen sensors for safety applications. In D. Jaiswal-Nagar, V. Dixit, & S. Devasahayam (Eds.), Towards Hydrogen Infrastructure: Advances and Challenges in Preparing for the Hydrogen Economy (pp. 275–314). Elsevier. https://doi.org/10.1016/B978-0-323-95553-9.00061-3 CR - Soumyanarayanan, A., Raju, M., Gonzalez Oyarce, A. L., Tan, A. K. C., Im, M.-Y., Petrovic, A. P., Ho, P., Khoo, K. H., Tran, M., Gan, C. K., Ernult, F., & Panagopoulos, C. (2017). Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. Nature Materials, 16(9), 898–904. https://doi.org/10.1038/nmat4934 CR - Xiang, H. J., Kan, E. J., Wei, S.-H., Whangbo, M.-H., & Gong, X. G. (2011). Predicting the spin-lattice order of frustrated systems from first principles. Physical Review B, 84(22), Article 224429. https://doi.org/10.1103/PhysRevB.84.224429 CR - Yang, H., Thiaville, A., Rohart, S., Fert, A., & Chshiev, M. (2015). Anatomy of Dzyaloshinskii–Moriya interaction at Co/Pt interfaces. Physical Review Letters, 115(26), Article 267210. https://doi.org/10.1103/PhysRevLett.115.267210 CR - Zhang, S., Zhang, J., Zhang, Q., Barton, C., Neu, V., Zhao, Y., Hou, Z., Wen, Y., Gong, C., Kazakova, O., Wang, W., Peng, Y., Garanin, D. A., Chudnovsky, E. M., & Zhang, X. (2018). Direct writing of room-temperature and zero-field skyrmion lattices by a scanning local magnetic field. Applied Physics Letters, 112(13), Article 132405. https://doi.org/10.1063/1.5021172 UR - https://doi.org/10.29130/dubited.1704212 L1 - https://dergipark.org.tr/en/download/article-file/4892372 ER -