TY - JOUR T1 - Büyük Sismik Veriler Üzerinde Zaman ve Frekans Tabanlı Özniteliklerin Gerçek Deprem Verilerinin Tespitindeki Etkisi TT - The Effect of Time and Frequency Based Features on Large Seismic Data in Detecting Real Earthquake Data AU - Narin, Ali AU - Erdoğan, Yunus Emre PY - 2025 DA - November Y2 - 2025 DO - 10.7212/karaelmasfen.1706849 JF - Karaelmas Fen ve Mühendislik Dergisi PB - Zonguldak Bulent Ecevit University WT - DergiPark SN - 2146-7277 SP - 95 EP - 107 VL - 15 IS - 3 LA - tr AB - Depremler, yer kabuğundaki ani hareketler sonucu meydana gelen doğal afetlerdir. Bu olayların hızlı bir şekilde tespit edilmesi can ve mal kaybının en aza indirilmesi açısından hayati öneme sahiptir. Erken ve doğru tespit, acil müdahale ekiplerinin olay yerine zamanında ulaşmasını sağlayarak halkın güvenliğini artıran önlemlerin hızla alınmasına olanak tanır. Bu çalışmada, sismik sinyaller üzerinden elde edilen özniteliklerin kullanımıyla deprem ve çevresel gürültülerin otomatik olarak ayrıştırılması hedeflenmiştir. Böylece gerçek deprem sinyallerinin tespit süreci hızlandırılmakta ve müdahale süresi kısaltılmaktadır. Sinyaller z-skor normalizasyon yöntemiyle ölçeklendirilmiş ve ardından zaman ve frekans alanlarına ait çeşitli öznitelikler çıkarılmıştır. Zaman alanında ortalama, standart sapma, maksimum, minimum, varyans, çarpıklık ve basıklık gibi öznitelikler kullanılmıştır. Frekans alanında ise tepe frekansı ve ortalama frekans öznitelikleri çıkarılmıştır. Bu öznitelikler sinyallerin daha doğru ve güvenilir şekilde sınıflandırılmasını sağlamaktadır. Çalışmada k-en yakın komşu (k-NN), karar ağaçları (DT) ve toplu torbalanmış karar ağaçları (EBT) algoritmaları kullanılarak sınıflandırma işlemleri gerçekleştirilmiştir. Elde edilen sonuçlara göre k-NN algoritması ile %94,2, DT algoritması ile %94,7 ve EBT algoritması ile %95,6 doğruluk değerleri elde edilmiştir. Bu bulgular deprem sinyallerinin yüksek doğrulukla tespit edilebileceğini göstermektedir. Sunulan çalışma hem akademik araştırmalar hem de pratik uygulamalar açısından önemli bir kaynak olma potansiyeline sahiptir ve depremlerin etkilerinin azaltılmasına yönelik gelecekteki çalışmalara katkı sağlamayı amaçlamaktadır. KW - Deprem Tespiti KW - Öznitelik Çıkarma KW - Karar Ağaçları KW - Toplu Torbalanmış Karar Ağaçları KW - K en yakın Komşu. N2 - Earthquakes are natural disasters that occur as a result of sudden movements in the Earth’s crust. Rapid detection of these events is of vital importance for minimizing loss of life and property. Early and accurate identification enables emergency response teams to arrive on scene in a timely manner and implement measures that enhance public safety. In this study, we aim to automatically distinguish real earthquake signals from environmental noise by using features extracted from seismic recordings, thereby accelerating the detection process and reducing response time. Signals were first scaled using z-score normalization, and then a variety of time- and frequency-domain features were computed. In the time domain, we extracted statistics such as mean, standard deviation, maximum, minimum, variance, skewness, and kurtosis. In the frequency domain, we derived peak frequency and average frequency features. These features improve the accuracy and reliability of signal classification. Classification was performed using k-nearest neighbors (k-NN), decision trees (DT), and ensemble bagged trees (EBT) algorithms. The results show accuracy rates of 94.2 % for k-NN, 94.7 % for DT, and 95.6 % for EBT. These findings demonstrate that earthquake signals can be detected with high accuracy. The presented work has the potential to serve both academic research and practical applications, and aims to contribute to future efforts in mitigating the impacts of earthquakes. CR - Ali, HA., Mohamed, C., Abdelhamid, B., Ourdani, N., El Alami, T. 2022. A comparative evaluation use bagging and boosting ensemble classifiers. 2022 International Conference on Intelligent Systems and Computer Vision (ISCV), 1-6. IEEE. DOI: 10.1109/ISCV54655.2022.9806080 CR - Avcil, F., Işık, E., İzol, R., Büyüksaraç, A., Arkan, E., Arslan, MH., ... Harirchian, E. 2024. Effects of the February 6, 2023, Kahramanmaraş earthquake on structures in Kahramanmaraş city. Natural Hazards, 120(3), 2953-2991. DOI: 10.1007/s11069-023-06314-1 CR - Bai, R., Meng, Z., Xu, Q., Fan, F. 2023. Fractional Fourier and time domain recurrence plot fusion combining convolutional neural network for bearing fault diagnosis under variable working conditions. Reliability Engineering & System Safety, 232, 109076. DOI: 10.1016/j.ress.2022.109076 CR - Bansal, M., Goyal, A., Choudhary, A. 2022. A comparative analysis of K-nearest neighbor, genetic, support vector machine, decision tree, and long short term memory algorithms in machine learning. Decision Analytics Journal, 3, 100071. DOI: 10.1016/j.dajour.2022.100071 CR - Bhatia, M., Ahanger, TA., Manocha, A. 2023. Artificial intelligence based real-time earthquake prediction. Engineering Applications of Artificial Intelligence, 120, 105856. DOI: 10.1016/j.engappai.2023.105856 CR - Cai, S., Zhou, J., Pan, J. 2021. Estimating the sample mean and standard deviation from order statistics and sample size in meta-analysis. Statistical Methods in Medical Research, 30(12), 2701-2719. DOI: 10.1177/09622802211047 CR - Delastrada, DP., Steffi, S., Hoendarto, G., Tjen, J. 2024. Random Forest Analysis for Predicting the Probability of Earthquake in Indonesia. Social Science and Humanities Journal, 9(1), 6295–6304. DOI:10.18535/sshj.v9i01.1574 CR - Erdoğan, YE., Narin, A. 2021. COVID-19 detection with traditional and deep features on cough acoustic signals. Computers in Biology and Medicine, 136, 104765. DOI: 10.1016/j.compbiomed.2021.104765. CR - Erdoğan, YE., Narin, A. 2022. Elektrokardiyografi Yardımıyla Hipertansiyonun Otomatik Belirlenmesinde Ampirik Kip Ayrışımının Gürültülü ve Gürültüsüz Sinyaller Üzerindeki Performansının Karşılaştırılması. El-Cezeri, 9(2), 788-800. DOI: 10.31202/ecjse.1009456 CR - Essam, Y., Kumar, P., Ahmed, AN., Murti, MA., El-Shafie, A. 2021. Exploring the reliability of different artificial intelligence techniques in predicting earthquake for Malaysia. Soil Dynamics and Earthquake Engineering, 147, 106826. DOI: 10.1016/j.soildyn.2021.106826 CR - Giarno, G., Hadi, MP., Suprayogi, S., Murti, SH. 2020. Suitable proportion sample of holdout validation for spatial rainfall interpolation in surrounding the Makassar Strait. Forum Geografi, 33(2), 219-232. DOI:10.23917/forgeo.v33i2.8351 CR - Gonzalez, E., Alvarez, L., Mazorra, L. 2012. Normalization and feature extraction on ear images. 2012 IEEE International Carnahan Conference on Security Technology (ICCST), 97-104. IEEE. DOI:10.1109/CCST.2012.6393543 CR - Haraguchi, T., Emoto, T., Hirayama, T., Imai, Y., Kato, M., Hirano, T. 2023. Peak-Frequency Histogram Similarity of Bowel Sounds for the Evaluation of Intestinal Conditions. Applied Sciences, 13(3), 1405. DOI:10.3390/app13031405 CR - Hearn, EH., Bürgmann, R., Reilinger, RE. 2002. Dynamics of Izmit earthquake postseismic deformation and loading of the Duzce earthquake hypocenter. Bulletin of the Seismological Society of America, 92(1), 172-193. DOI:10.1785/0120000832 CR - Jiao, P., Alavi, AH. 2020. Artificial intelligence in seismology: advent, performance and future trends. Geoscience Frontiers, 11(3), 739-744. DOI: 10.1016/j.gsf.2019.10.004 CR - Kaliappan, J., Bagepalli, AR., Almal, S., Mishra, R., Hu, YC., Srinivasan, K. 2023. Impact of Cross-validation on Machine Learning models for early detection of intrauterine fetal demise. Diagnostics, 13(10), 1692. DOI:10.3390/diagnostics13101692 CR - Kaur, R., GholamHosseini, H., Sinha, R., Lindén, M. 2022. Melanoma classification using a novel deep convolutional neural network with dermoscopic images. Sensors, 22(3), 1134. DOI: 10.3390/s22031134 CR - Kelter, R. 2021. Bayesian model selection in the M-open setting—Approximate posterior inference and subsampling for efficient large-scale leave-one-out cross-validation via the difference estimator. Journal of Mathematical Psychology, 100, 102474. DOI: 10.1016/j.jmp.2020.102474 CR - Kennett, BLN., Engdahl, ER. 1991. Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2), 429-465. DOI: 10.1111/j.1365-246X.1991.tb06724.x CR - Liu, C., Fang, D., Zhao, L. 2021. Reflection on earthquake damage of buildings in 2015 Nepal earthquake and seismic measures for post-earthquake reconstruction. Structures, 30, 647-658. Elsevier. DOI: 10.1016/j.istruc.2020.12.089 CR - Liu, R., Liu, Q., Shi, J., Yu, W., Gong, X., Chen, N., ... Wang, Z. 2021. Application of a feature extraction and normalization method to improve research evaluation across clinical disciplines. Annals of Translational Medicine, 9(20). DOI: 10.21037/atm-21-5046 CR - Magrini, F., Jozinović, D., Cammarano, F., Michelini, A., Boschi, L. 2020. Local earthquakes detection: A benchmark dataset of 3-component seismograms built on a global scale. Artificial Intelligence in Geosciences, 1, 1-10. DOI: 10.1016/j.aiig.2020.04.001 CR - Majstorović, J., Giffard‐Roisin, S., Poli, P. 2021. Designing convolutional neural network pipeline for near‐fault earthquake catalog extension using single‐station waveforms. Journal of Geophysical Research: Solid Earth, 126(7), e2020JB021566. DOI:10.1029/2020JB021566 CR - Ozkaya, SG., Baygin, M., Barua, PD., Tuncer, T., Dogan, S., Chakraborty, S., Acharya, UR. 2024. An automated earthquake classification model based on a new butterfly pattern using seismic signals. Expert Systems with Applications, 238, 122079. DOI: 10.1016/j.eswa.2023.122079 CR - Shaheed, K., Mao, A., Qureshi, I., Kumar, M., Hussain, S., Ullah, I., Zhang, X. 2022. DS-CNN: A pre-trained Xception model based on depth-wise separable convolutional neural network for finger vein recognition. Expert Systems with Applications, 191, 116288. DOI: 10.1016/j.eswa.2021.116288 CR - Sholeh, M., Nurnawati, EK. 2024. Comparison of Z-score, min-max, and no normalization methods using support vector machine algorithm to predict student’s timely graduation. AIP Conference Proceedings, 3077(1). AIP Publishing. DOI:10.1063/5.0202505 CR - Singh, AK., Krishnan, S. 2023. ECG signal feature extraction trends in methods and applications. BioMedical Engineering OnLine, 22(1), 22. DOI:10.1186/s12938-023-01075-1 CR - Tam, A., Barker, J., Rubin, D. 2016. A method for normalizing pathology images to improve feature extraction for quantitative pathology. Medical Physics, 43(1), 528-537. DOI:10.1118/1.4939130 CR - Tasci, E., Zhuge, Y., Kaur, H., Camphausen, K., Krauze, AV. 2022. Hierarchical voting-based feature selection and ensemble learning model scheme for glioma grading with clinical and molecular characteristics. International Journal of Molecular Sciences, 23(22), 14155. DOI:10.3390/ijms232214155 Yetkın, M. 2024. 6 Şubat 2023 Depremleri İçin Kirsaldaki Yiğma Yapilarin Performanslari Üzerine Bir Saha Araştirmasi: Nurdaği/Gaziantep Örneği. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(3), 821-837. DOI: 10.17780/ksujes.1430177 CR - Yapıcı, İŞ., Arslan, RU., Erkaymaz, O. 2024. Kalp yetmezliği tanılı hastaların hayatta kalma tahmininde topluluk makine öğrenme yöntemlerinin performans analizi. Karaelmas Fen ve Mühendislik Dergisi, 14(1), 59-69. DOI: 10.7212/karaelmasfen.1429458 CR - Zhang, Y., Li, H., Du, J., Qin, J., Wang, T., Chen, Y., ... Lei, B. 2021. 3D multi-attention guided multi-task learning network for automatic gastric tumor segmentation and lymph node classification. IEEE Transactions on Medical Imaging, 40(6), 1618-1631. DOI: 10.1109/TMI.2021.3062902 UR - https://doi.org/10.7212/karaelmasfen.1706849 L1 - https://dergipark.org.tr/en/download/article-file/4904147 ER -