TY - JOUR T1 - Biodegradable CNFC/EPDM Green Composites: A Sustainable Alternative for Automotive Sealing Profiles TT - Otomotiv Endüstrisi Gereksinimlerine Göre Karboksilatlı Nanofibrile Selüloz/EPDM Kompozitlerinin Karakterizasyonu AU - Dikmen Küçük, Sibel PY - 2025 DA - October Y2 - 2025 DO - 10.29130/dubited.1708746 JF - Duzce University Journal of Science and Technology JO - DÜBİTED PB - Duzce University WT - DergiPark SN - 2148-2446 SP - 1629 EP - 1642 VL - 13 IS - 4 LA - en AB - Sustainable material development is one of the most researched topics in the automotive industry. Sealing profiles, which are indispensable components of automotive vehicles, contain many petroleum-based products which automotive manufacturers are working to replace with biodegradable materials. The aim of this study is to investigate the effect of carboxylated nanofibrillated cellulose (CNFC) on the ethylene propylene diene monomer (EPDM) rubber in terms of evaluation some properties such as mechanical, chemical, thermal, morphological, rheological, and deformation. The CNFC was added at levels of 1, 3, 5, and 10 parts per hundred parts of rubber (pphr) to the EPDM rubber compound instead of synthetic and petroleum-based EPDM to develop CNFC/EPDM green composites. The rheological results showed that the CNFC/EPDM green composites were still acceptable according to the strength specifications of automotive manufacturers. Despite some lower mechanical properties, CNFC addition up to 10 pphr was still a suitable replacement for EPDM because the values were within specifications of automotive manufacturers. However, when the CNFC was added at more than 3 pphr, the lifespan of the CNFC/EPDM green composites was limited to three years according to the weathering results. KW - EPDM KW - CNFC KW - Nanofibrillated Cellulose KW - Sealing Profiles KW - Biodegradable Fillers N2 - Sürdürülebilir malzeme geliştirme, otomotiv endüstrisinde en çok araştırılan konulardan biridir. Otomotiv araçlarının vazgeçilmez bileşenleri olan sızdırmazlık profilleri, otomotiv üreticilerinin biyolojik olarak parçalanabilir malzemelerle değiştirmek için çalıştığı birçok petrol bazlı ürün içerir. Bu çalışmanın amacı, karboksile edilmiş nanofibrile selülozun (CNFC) etilen propilen dien monomer (EPDM) kauçuğunun mekanik, kimyasal, termal, morfolojik, reolojik ve deformasyon gibi bazı özelliklerinin değerlendirilmesi üzerine etkisini araştırmaktır. Çalışmada öncelikle CNFC, CNFC/EPDM yeşil kompozitleri geliştirmek için sentetik ve petrol bazlı EPDM yerine EPDM kauçuk bileşiğine 1, 3, 5 ve 10 (pphr) seviyelerinde eklenmiş olup reolojik sonuçlar, CNFC/EPDM yeşil kompozitlerinin otomotiv üreticilerinin mukavemet spesifikasyonlarına göre hala kabul edilebilir seviyede olduğunu göstermiştir. Bazı düşük mekanik özelliklere rağmen, 10 pphr'ye kadar CNFC ilavesi neticesinde, değerler otomotiv üreticilerinin spesifikasyonları dahilinde olduğu için EPDM için uygun bir alternatiftir. Ancak CNFC'nin 3 pphr'den fazla ilave edilmesi durumunda, iklimlendirme koşullarına dayanıklılık sonuçlarına göre CNFC/EPDM yeşil kompozitlerin ömrü üç yıl ile sınırlı kalmaktadır. CR - Ahmad, E. E. M., & Luyt, A. S. (2012). Effects of organic peroxide and polymer chain structure on morphology and thermal properties of sisal fibre reinforced polyethylene composites. Composites Part A: Applied Science and Manufacturing, 43(4), 703-710. https://doi.org/10.1016/j.compositesa.2011.12.011 CR - Ansari, F., Skrifvars, M., & Berglund, L. (2015). Nanostructured biocomposites based on unsaturated polyester resin and a cellulose nanofiber network. Composites Science and Technology, 117, 298-306. https://doi.org/10.1016/j.compscitech.2015.07.004 CR - Arayapranee, W. & Rempel, G. L. (2008). A comparative study of the cure characteristics, processibility, mechanical properties, ageing, and morphology of rice husk ash, silica and carbon black filled 75:25 NR/EPDM blends. Journal of Applied Polymer Science, 109(2), 932-941. https://doi.org/10.1002/app.28111 CR - Arroyo, M., López-Manchado, A. M., & Herrero, B. (2003). Organo-montmorillonite as substitute of carbon black in natural rubber compounds. Polymer, 44(8), 2447-2453. https://doi.org/10.1016/S0032-3861(03)00090-9 CR - Aulin, C., Ahola, S., Josefsson, P., Nishino, T., Hirose, Y., Osterberg, M., & Wågberg, L. (2009). Nanoscale cellulose films with different crystallinities and mesostructures: Their surface properties and interaction with water. Langmuir, 25(13), 7675-7685. https://doi.org/10.1021/la900323n CR - Cheng, D., Wen, Y., An, X., Zhu, X., & Ni, Y. (2016). TEMPO-oxidized cellulose nanofibers (TOCNs) as a green reinforcement for waterborne polyurethane coating (WPU) on wood. Carbohydrate Polymers, 151, 326-334. https://doi.org/10.1016/j.carbpol.2016.05.083 CR - Choi, S. S., Nah, C., Lee, S. G., & Joo, C. W. (2003). Effect of filler-filler interaction on rheological behaviour of natural rubber compounds filled with both carbon black and silica. Polymer International, 52(1), 23-28. https://doi.org/10.1002/pi.975 CR - Clarkson, C. M., & Youngblood, J. P. (2018). Dry-spinning of cellulose nanocrystal/polylactic acid composite fibers. Green Materials, 6(1), 6-14. https://doi.org/10.1680/jgrma.17.00027 CR - Delor-Jestin, F., Lacoste, J., Barrois-Oudin, N., Cardinet, C., & Lemaire, J. (2000). Photo-, thermal and natural ageing of ethylene-propylene-diene monomer (EPDM) rubber used in automotive applications. Influence of carbon black, crosslinking and stabilizing agents. Polymer Degradation and Stability, 67(3), 469-477. https://doi.org/10.1016/S0141-3910(99)00147-0 CR - Dikmen Kucuk, S., Tozluoglu, A., & Guner, Y. (2020). The potential of TEMPO-oxidized cellulose nanofibers to replace ethylene-propylene-diene monomer rubber. International Journal of Energy and Environmental Engineering, 14(3), 97-102. CR - Dikmen Kucuk, S., Tozluoglu, A., Guner, Y., Arslan, R., & Sertkaya, S. (2022). Mechanical, rheological and aging properties of nano-fibrillated cellulose/EPDM composites. Artvin Coruh University Journal of Forestry Faculty, 23(1), 11-22. https://doi.org/10.17474/artvinofd.934238 CR - Feldman, D. (2002). Polymer weathering: Photo-oxidation. Journal of Polymers and the Environment, 10(4), 163-173. https://doi.org/10.1023/A:1021148205366 CR - Freise, C. K. (2002). Handbuch der Karosseriedichtungen. Wolfsburg, Germany: Volkswagen AG. George, K., Biswal, M., Mohanty, S., Nayak, S. K., & Panda, P. (2021). Nanosilica filled EPDM/Kevlar fiber hybrid nanocomposites: Mechanical and thermal properties. Materials Today Proceedings, 41(5), 983-986. https://doi.org/10.1016/j.matpr.2020.02.817 CR - Ginic-Markovic, M., Choudhurry, N. R., Dimopoulos, M., & Matisons, J. G. (2000). Weatherability of coated EPDM rubber compound by controlled UV irradiation. Polymer Degradation and Stability, 69(2), 157-168. https://doi.org/10.1016/S0141-3910(00)00053-7 CR - Hua, K., Rocha, I., Zhang, P., Gustafsson, S., Ning, Y., Strømme, M., Mihranyan, A. & Ferraz, N. (2016). Transition from bioinert to bioactive material by tailoring the biological cell response to carboxylated nanocellulose. Biomacromolecules, 17(3), 1224-1233. https://doi.org/10.1021/acs.biomac.6b00053 CR - Hubbe, M. A., Rojas, O. J., Lucia, L. A., & Sain, M. (2008). Cellulosic nanocomposites: A review. BioResources, 3(3), 929-980. CR - John, M. J., & Thomas, S. (2008). Biofibres and biocomposites. Carbohydrate Polymers, 71(3), 343-364. https://doi.org/10.1016/j.carbpol.2007.05.040 CR - Keeney, J. D., & Mayfield, C. C. (2002). Automotive vehicle seal and decorative trim strip (U.S. Patent No. 6,422,571). United States Patent and Trademark Office. https://patents.google.com/patent/US6422571 CR - Kim, U. J., Kuga, S., Wada, M., Okano, T., & Kondo, T. (2000). Periodate oxidation of crystalline cellulose. Biomacromolecules, 1(3), 488-492. https://doi.org/10.1021/bm0000337 CR - Kucuk, S. D., Gerengi, H., & Guner, Y. (2018). The effect of Tinuvin derivatives as an ultraviolet (UV) stabilizer on EPDM rubber. Periodicals of Engineering and Natural Sciences, 6(1), 52-62. CR - Kumar, B., Rana, S., & Singh, R. P. (2007). Photo-oxidation of EPDM/layered double hydroxides composites: Influence of layered hydroxides and stabilizers. Express Polymer Letters, 1(11), 748-754. https://doi.org/10.3144/expresspolymlett.2007.103 CR - Larraza, I., Vadillo, J., Santamaria-Echart, A., Tejado, A., Azpeitia, M., Vesga, E., Orue, A., Saralegi, A., Arbelaiz, A., & Eceiza, A. (2020). The effect of the carboxylation degree on cellulose nanofibers and waterborne polyurethane/cellulose nanofiber nanocomposites properties. Polymer Degradation and Stability, 173, Article 109084. https://doi.org/10.1016/j.polymdegradstab.2020.109084 CR - Lavoratti, A., Scienza, L. C., & Zattera, A. J. (2016). Dynamic-mechanical and thermomechanical properties of cellulose nanofiber/polyester resin composites. Carbohydrate Polymers, 136, 955-963. https://doi.org/10.1016/j.carbpol.2015.10.008 CR - Lin, N., Bruzzese, C., & Dufresne, A. (2012). TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges. ACS Applied Materials & Interfaces, 4(9), 4948-4959. https://doi.org/10.1021/am301325r CR - Mat, N. S. C., Ismail, H., & Othman, N. (2016). Curing characteristics and tear properties of bentonite filled ethylene propylene diene (EPDM) rubber composites. Procedia Chemistry, 19, 394-400. https://doi.org/10.1016/j.proche.2016.03.029 CR - Menezes, A. J., Siqueira, G., Curvelo, A. A. S., & Dufresne, A. (2009). Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer, 50(19), 4552-4563. https://doi.org/10.1016/j.polymer.2009.07.038 CR - Miao, C., & Hamad, W. Y. (2016). Alkenylation of cellulose nanocrystals (CNC) and their applications. Polymer, 101, 338-346. https://doi.org/10.1016/j.polymer.2016.08.099 CR - Morlat-Therias, S., Fanton, E., Tomer, N. S., Rana, S., Singh, R. P., & Gardette, J. L. (2006). Photooxidation of vulcanized EPDM/montmorillonite nanocomposites. Polymer Degradation and Stability, 91(2), 3033-3039. https://doi.org/10.1016/j.polymdegradstab.2006.08.026 CR - Nafeesa, M. S., & Azura, A. R. (2018). The influence of different types of rubber on curing behaviour and dynamic properties of rubber compound. Journal of Physics: Conference Series, 1082(1), Article 012010. https://doi.org/10.1088/1742-6596/1082/1/012010 CR - Nair, S. S., Kuo, P. Y., Chen, H., & Yan, N. (2017). Investigating the effect of lignin on the mechanical, thermal, and barrier properties of cellulose nanofibril reinforced epoxy composite. Industrial Crops and Products, 100, 208-217. https://doi.org/10.1016/j.indcrop.2017.02.032 CR - Poyraz, B., Güner, Y., Yardım, T., Yamanoğlu, R., Tozluoğlu, A., Durmuş, S., & Şen, M. (2022). Influence of microcrystalline cellulose on EPDM-based automotive sealing profile. Journal of Elastomers & Plastics, 55(1), 28-45. https://doi.org/10.1177/00952443221138915 CR - Sarkhel, G., & Choudhury, A. (2008). Dynamic mechanical and thermal properties of PE-EPDM based jute fiber composites. Journal of Applied Polymer Science, 108(6), 3442-3453. https://doi.org/10.1002/app.28024 CR - Shimazaki, Y., Miyazaki, Y., Takezawa, Y., Nogi, M., Abe, K., Ifuku, S., & Yano, H. (2007). Excellent thermal conductivity of transparent cellulose nanofiber/epoxy resin nanocomposites. Biomacromolecules, 8(9), 2976-2978. https://doi.org/10.1021/bm7004998 CR - Siriwerdana, S., Ismail, H., & Ishiaku, U. S. (2001). A comparison of white rice husk ash and silica as fillers in ethylene-propylene-diene terpolymer vulcanizates. Polymer International, 50(6), 707-713. https://doi.org/10.1002/pi.691 CR - Snijders, E. A., Boersma, A., Baarle, B., & Noordermeer, J. (2005). Effect of third monomer type and content on the UV stability of EPDM. Polymer Degradation and Stability, 89(2), 200-207. https://doi.org/10.1016/j.polymdegradstab.2004.12.003 CR - Thomas, D., & Shaw, P. A. (1991). The Kalahari environment. Cambridge University Press. Wang, J., Wu, W., Wang, W., & Zhang, J. (2011). Preparation and characterization of hemp hurd power filled SBR and EPDM elastomers. Journal of Polymer Research, 18(5), 1023-1032. https://doi.org/10.1007/s10965-010-9503-4 CR - Xu, G., Yan, G., & Zhang, J. (2015). Lignin as coupling agent in EPDM rubber: Thermal and mechanical properties. Polymer Bulletin, 72, 2389-2398. https://doi.org/10.1007/s00289-015-1411-7 UR - https://doi.org/10.29130/dubited.1708746 L1 - https://dergipark.org.tr/en/download/article-file/4912724 ER -