TY - JOUR T1 - DC-DC Converter Architectures TT - DA-DA Dönüştürücü Mimarileri: Kritik Bir Derleme AU - Erat, Abdurrahim AU - Vural, Ahmet Mete PY - 2025 DA - October Y2 - 2025 JF - Balkan Journal of Electrical and Computer Engineering PB - MUSA YILMAZ WT - DergiPark SN - 2147-284X SP - 307 EP - 324 VL - 13 IS - 3 LA - en AB - Abstract—Direct Current (DC)-DC converter architectures constitute a fundamental component of modern power electronic systems, enabling efficient voltage regulation and energy transfer across various stages of electrical networks. The growing integration of renewable energy sources, the electrification of transportation, and the proliferation of portable electronic devices have significantly increased the demand for compact, reliable, and high-efficiency converter designs. Recent advancements in semiconductor technologies, particularly those based on wide-bandgap materials, have further accelerated the development and deployment of diverse converter topologies. This study provides a comprehensive review of both conventional and emerging DC-DC converter configurations, examining their operating principles, performance characteristics, suitability for specific applications, and design complexity. Furthermore, a bibliometric analysis has been conducted to identify prevailing research trends, influential contributors, and collaborative networks within the field. By critically evaluating the advantages and limitations of each topology, the study aims to support future research directions and technological innovations in power electronics. KW - Converter topologies KW - DC-DC converter KW - Isolated topologies KW - Non-isolated converters KW - Power electronics. N2 - Doğru Akım (DA)-DA dönüştürücü mimarileri, gerilim seviyelerinin düzenlenmesi ve bir elektriksel sistemin farklı kademeleri arasında etkin güç transferinin sağlanması açısından çağdaş güç elektroniği teknolojileri için kritik bir öneme sahiptir. Yenilenebilir enerji teknolojilerindeki hızlı gelişmeler, elektrik enerjisi taşıma sistemleri, taşınabilir elektronik aygıtlar, elektrikli araç teknolojileri ve çeşitli diğer güç elektroniği uygulamaları doğrultusunda; sistem verimliliğini artıran, kompakt yapıya sahip ve yüksek güvenilirlik sunan DA-DA dönüştürücü mimarilerine olan ihtiyaç giderek artmaktadır. Son yıllarda yarı iletken tabanlı güç elektroniği teknolojilerinde kaydedilen kayda değer teknik ilerlemeler, DA-DA dönüştürücü topolojilerinin evrimini ve bu yapıların birçok sektörde yaygın biçimde uygulanmasını büyük ölçüde etkilemiştir. Bu bağlamda, yarı iletken teknolojisindeki gelişmeler, DA-DA dönüştürücü yapıların endüstride geniş çapta benimsenmesinin başlıca etkenlerinden biri olmuştur. Bu çalışma, temel ve ileri düzey DA-DA dönüştürücü topolojilerini kapsamlı biçimde ele alarak; bu yapıların performans özelliklerini, çalışma prensiplerini ve çeşitli ticari ve bilimsel uygulamalara uygunluklarını incelemektedir. Her bir topolojinin avantaj ve dezavantajlarını ayrıntılı biçimde değerlendiren bu araştırma, güç elektroniği alanındaki gelecekteki bilimsel çalışmalar ve teknoloji geliştirme faaliyetleri için yönlendirici nitelikte katkılar sunmayı amaçlamaktadır. CR - [1] J. Chen, M.-K. Nguyen, Z. Yao, C. Wang, L. Gao, and G. Hu, “DC-DC Converters for Transportation Electrification: Topologies, Control, and Future Challenges,” IEEE Electrif. Mag., vol. 9, no. 2, pp. 10–22, 2021, doi: 10.1109/MELE.2021.3070934. CR - [2] T. Sutikno, A. S. Samosir, R. A. Aprilianto, H. S. Purnama, W. Arsadiando, and S. Padmanaban, “Advanced DC–DC converter topologies for solar energy harvesting applications: a review,” Clean Energy, vol. 7, no. 3, pp. 555–570, Jun. 2023, doi: 10.1093/ce/zkad003. CR - [3] M. F. Akhtar, S. R. S. Raihan, N. A. Rahim, M. N. Akhtar, and E. Abu Bakar, “Recent Developments in DC-DC Converter Topologies for Light Electric Vehicle Charging: A Critical Review,” Applied Sciences, vol. 13, no. 3. 2023. doi: 10.3390/app13031676. CR - [4] Z. W. Khan, H. Minxiao, C. Kai, L. Yang, and A. u. Rehman, “State of the Art DC-DC Converter Topologies for the Multi-Terminal DC Grid Applications: A Review,” in 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), 2020, pp. 1–7. doi: 10.1109/PESGRE45664.2020.9070529. CR - [5] J. Wang, B. Wang, L. Zhang, J. Wang, N. I. Shchurov, and B. V Malozyomov, “Review of bidirectional DC–DC converter topologies for hybrid energy storage system of new energy vehicles,” Green Energy Intell. Transp., vol. 1, no. 2, p. 100010, 2022, doi: https://doi.org/10.1016/j.geits.2022.100010. CR - [6] M. Abolghasemi, I. Soltani, M. Shivaie, and H. Vahedi, “Recent advances of step-up multi-stage DC-DC converters: A review on classifications, structures and grid applications,” Energy Reports, vol. 13, pp. 3050–3081, 2025, doi: https://doi.org/10.1016/j.egyr.2025.02.025. CR - [7] A. Tuluhong, Z. Xu, Q. Chang, and T. Song, “Recent Developments in Bidirectional DC-DC Converter Topologies, Control Strategies, and Applications in Photovoltaic Power Generation Systems: A Comparative Review and Analysis,” Electronics, vol. 14, no. 2. 2025. doi: 10.3390/electronics14020389. CR - [8] M. Mezouari, M. Megrini, and A. Gaga, “High efficiency DC–DC converter for renewable energy integration and energy storage applications: A review of topologies and control strategies,” Control Eng. Pract., vol. 162, p. 106371, 2025, doi: https://doi.org/10.1016/j.conengprac.2025.106371. CR - [9] F. Mumtaz, N. Z. Yahaya, S. T. Meraj, B. Singh, R. Kannan, and O. Ibrahim, “Review on non-isolated DC-DC converters and their control techniques for renewable energy applications,” Ain Shams Eng. J., vol. 12, no. 4, pp. 3747–3763, 2021. CR - [10] A. Amir, A. Amir, H. S. Che, A. Elkhateb, and N. Abd Rahim, “Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems,” Renew. energy, vol. 136, pp. 1147–1163, 2019. CR - [11] S. Dahale, A. Das, N. M. Pindoriya, and S. Rajendran, “An overview of DC-DC converter topologies and controls in DC microgrid,” in 2017 7th International Conference on Power Systems (ICPS), 2017, pp. 410–415. CR - [12] A. Lavanya, J. D. Navamani, K. Vijayakumar, and R. Rakesh, “Multi-input DC-DC converter topologies-a review,” in 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 2016, pp. 2230–2233. CR - [13] M. Parvez, A. T. Pereira, N. Ertugrul, N. H. E. Weste, D. Abbott, and S. F. Al-Sarawi, “Wide bandgap DC–DC converter topologies for power applications,” Proc. IEEE, vol. 109, no. 7, pp. 1253–1275, 2021. CR - [14] S. A. Gorji, H. G. Sahebi, M. Ektesabi, and A. B. Rad, “Topologies and control schemes of bidirectional DC–DC power converters: An overview,” IEEE Access, vol. 7, pp. 117997–118019, 2019. CR - [15] F. L. Luo and H. Ye, Advanced dc/dc converters. crc Press, 2016. CR - [16] S. Ikeda and F. Kurokawa, “Isolated and wide input ranged boost full bridge DC-DC converter with low loss active snubber,” in 2017 IEEE Energy Conversion Congress and Exposition (ECCE), 2017, pp. 2213–2218. CR - [17] F. Krismer and J. W. Kolar, “Efficiency-optimized high-current dual active bridge converter for automotive applications,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2745–2760, 2011. CR - [18] A. Gnanasaravanan and M. Rajaram, “Dynamic response analysis and output voltage control of asymmetric half bridge DC–DC converter for low voltage applications,” Int. J. Electr. Power Energy Syst., vol. 43, no. 1, pp. 774–778, 2012. CR - [19] A. G. Saravanan and M. Rajaram, “Fuzzy controller for dynamic performance improvement of a half-bridge isolated DC–DC converter,” Neurocomputing, vol. 140, pp. 283–290, 2014. CR - [20] R. W. A. A. De Doncker, D. M. Divan, and M. H. Kheraluwala, “A three-phase soft-switched high-power-density DC/DC converter for high-power applications,” IEEE Trans. Ind. Appl., vol. 27, no. 1, pp. 63–73, 1991. CR - [21] S. Shao, H. Chen, X. Wu, J. Zhang, and K. Sheng, “Circulating current and ZVS-on of a dual active bridge DC-DC converter: A review,” Ieee Access, vol. 7, pp. 50561–50572, 2019. CR - [22] A. Kumar, A. H. Bhat, and P. Agarwal, “Review and comparative analysis of dual active bridge isolated DC to DC converter with different control techniques,” Int. J. Ind. Electron. Drives, vol. 4, no. 2, pp. 69–84, 2018. CR - [23] Q. Bu, H. Wen, J. Wen, Y. Hu, and Y. Du, “Transient DC bias elimination of dual-active-bridge DC–DC converter with improved triple-phase-shift control,” IEEE Trans. Ind. Electron., vol. 67, no. 10, pp. 8587–8598, 2019. CR - [24] J.-Y. Lee, H.-S. Kim, and J.-H. Jung, “Enhanced dual-active-bridge DC–DC converter for balancing bipolar voltage level of DC distribution system,” IEEE Trans. Ind. Electron., vol. 67, no. 12, pp. 10399–10409, 2019. CR - [25] L. Chen, S. Shao, Q. Xiao, L. Tarisciotti, P. W. Wheeler, and T. Dragičević, “Model predictive control for dual-active-bridge converters supplying pulsed power loads in naval DC micro-grids,” IEEE Trans. Power Electron., vol. 35, no. 2, pp. 1957–1966, 2019. CR - [26] S. Zengin and M. Boztepe, “A novel current modulation method to eliminate low-frequency harmonics in single-stage dual active bridge AC–DC converter,” IEEE Trans. Ind. Electron., vol. 67, no. 2, pp. 1048–1058, 2019. CR - [27] H. Qin and J. W. Kimball, “Generalized Average Modeling of Dual Active Bridge DC–DC Converter,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 2078–2084, 2012, doi: 10.1109/TPEL.2011.2165734. CR - [28] R. Jha, M. Forato, S. Prakash, H. Dashora, and G. Buja, “An analysis-supported design of a single active bridge (SAB) converter,” Energies, vol. 15, no. 2, p. 666, 2022. CR - [29] D. Vinnikov, A. Chub, E. Liivik, F. Blaabjerg, and Y. Siwakoti, “Boost half-bridge DC-DC converter with reconfigurable rectifier for ultra-wide input voltage range applications,” in 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), 2018, pp. 1528–1532. CR - [30] H.-S. Lee, B. Kang, W.-S. Kim, and S.-J. Yoon, “Reduction of input voltage/current ripples of boost half-bridge DC-DC converter for photovoltaic micro-inverter,” Sol. Energy, vol. 188, pp. 1084–1101, 2019. CR - [31] C.-E. Kim, G.-W. Moon, and S.-K. Han, “Voltage Doubler Rectified Boost-Integrated Half Bridge (VDRBHB) Converter for Digital Car Audio Amplifiers,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2321–2330, 2007, doi: 10.1109/TPEL.2007.904222. CR - [32] H.-S. Lee, H.-J. Choe, and J.-J. Yun, “Improved Boost Half-Bridge DC–DC Converter for DC Distribution Networks,” J. Electr. Eng. Technol., vol. 17, no. 5, pp. 2889–2898, 2022, doi: 10.1007/s42835-022-01107-1. CR - [33] C. Yoon, J. Kim, and S. Choi, “Multiphase DC–DC Converters Using a Boost-Half-Bridge Cell for High-Voltage and High-Power Applications,” IEEE Trans. Power Electron., vol. 26, no. 2, pp. 381–388, 2011, doi: 10.1109/TPEL.2010.2060498. CR - [34] H.-S. Lee and J.-J. Yun, “Quasi-Resonant Voltage Doubler With Snubber Capacitor for Boost Half-Bridge DC–DC Converter in Photovoltaic Micro-Inverter,” IEEE Trans. Power Electron., vol. 34, no. 9, pp. 8377–8388, 2019, doi: 10.1109/TPEL.2018.2883535. CR - [35] K. Fathy, H. W. Lee, T. Mishima, and M. Nakaoka, “Boost-half bridge single power stage PWM DC-DC converter for small scale fuel cell stack,” in 2006 IEEE International Power and Energy Conference, 2006, pp. 426–431. CR - [36] V. A. G. Cunha, A. O. C. Neto, G. B. Lima, and L. C. G. Freitas, “A Bridgeless Boost Half Bridge DC-DC Converter for Electrical and Hybrid Vehicle Applications,” in 2019 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), 2019, pp. 1–6. doi: 10.1109/ISGT-LA.2019.8895388. CR - [37] C. Yoon, J. Kim, and S. Choi, “Multiphase DC–DC converters using a boost-half-bridge cell for high-voltage and high-power applications,” IEEE Trans. Power Electron., vol. 26, no. 2, pp. 381–388, 2010. CR - [38] B. Su, T. Yang, Z. Lu, and D. Xu, “Soft-switching dual forward DC/DC converters employing secondary side control,” in 2009 IEEE Energy Conversion Congress and Exposition, 2009, pp. 1855–1859. CR - [39] K.-H. Cheng, C.-F. Hsu, C.-M. Lin, T.-T. Lee, and C. Li, “Fuzzy–neural sliding-mode control for DC–DC converters using asymmetric Gaussian membership functions,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1528–1536, 2007. CR - [40] R. Kanthimathi and J. Kamala, “Analysis of different flyback converter topologies,” in 2015 international conference on industrial instrumentation and control (ICIC), 2015, pp. 1248–1252. CR - [41] M. C. Taneri, N. Genc, and A. Mamizadeh, “Analyzing and comparing of variable and constant switching frequency flyback DC-DC Converter,” in 2019 4th International Conference on Power Electronics and their Applications (ICPEA), 2019, pp. 1–5. CR - [42] J.-W. Yang and H.-L. Do, “Soft-switching dual-flyback DC–DC converter with improved efficiency and reduced output ripple current,” IEEE Trans. Ind. Electron., vol. 64, no. 5, pp. 3587–3594, 2017. CR - [43] Z. Zhang, M. Liao, D. Jiang, X. Yang, and S. Li, “High step-up isolated forward-flyback DC/DC converter based on resonance with pulse frequency modulation,” J. Power Electron., vol. 21, no. 2, pp. 483–493, 2021, doi: 10.1007/s43236-020-00186-5. CR - [44] V. Parkash, P. Kumar, P. Sharma, and G. Sapra, “Design and implementation of flyback converter as high voltage power supply for nanofibers production,” Mater. Today Proc., vol. 45, pp. 5285–5291, 2021. CR - [45] Y. Wu, Y. Huangfu, R. Ma, A. Ravey, and D. Chrenko, “A strong robust DC-DC converter of all-digital high-order sliding mode control for fuel cell power applications,” J. Power Sources, vol. 413, pp. 222–232, 2019. CR - [46] R. W. Erickson, “DC–DC power converters,” Wiley Encycl. Electr. Electron. Eng., 2001. CR - [47] K.-H. Chen and T.-J. Liang, “Design of Quasi-resonant flyback converter control IC with DCM and CCM operation,” in 2014 International Power Electronics Conference (IPEC-Hiroshima 2014-ECCE ASIA), 2014, pp. 2750–2753. CR - [48] M. Salem et al., “Three-phase series resonant DC-DC boost converter with double LLC resonant tanks and variable frequency control,” IEEE Access, vol. 8, pp. 22386–22399, 2020. CR - [49] M. Salem, A. Jusoh, N. R. N. Idris, H. S. Das, and I. Alhamrouni, “Resonant power converters with respect to passive storage (LC) elements and control techniques–An overview,” Renew. Sustain. Energy Rev., vol. 91, pp. 504–520, 2018. CR - [50] F. Alaql and I. Batarseh, “Review and comparison of resonant DC-DC converters for wide-output voltage range applications,” in 2020 IEEE Energy Conversion Congress and Exposition (ECCE), 2020, pp. 1197–1203. CR - [51] X. Zhao et al., “A high-efficiency hybrid series resonant DC-DC converter with boost converter as secondary for photovoltaic applications,” in 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 2015, pp. 5462–5467. doi: 10.1109/ECCE.2015.7310428. CR - [52] X. Zhao, L. Zhang, R. Born, and J.-S. Lai, “A High-Efficiency Hybrid Resonant Converter With Wide-Input Regulation for Photovoltaic Applications,” IEEE Trans. Ind. Electron., vol. 64, no. 5, pp. 3684–3695, 2017, doi: 10.1109/TIE.2017.2652340. CR - [53] G. I. Vacheva, K. Genev, and N. L. Hinov, “Modeling and Simulation of DC-DC Push-Pull Converter,” in 2022 57th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST), 2022, pp. 1–4. doi: 10.1109/ICEST55168.2022.9828584. CR - [54] Q. Wu, Q. Wang, J. Xu, and L. Xiao, “A wide load range ZVS push–pull DC/DC converter with active clamped,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2865–2875, 2016. CR - [55] S. Musumeci and S. Di Mauro, “Low voltage single fuel cell interface by Push-Pull converter: A case of study,” in 2017 6th International Conference on Clean Electrical Power (ICCEP), 2017, pp. 541–548. CR - [56] S. Bal, A. K. Rathore, and D. Srinivasan, “Naturally clamped snubberless soft-switching bidirectional current-fed three-phase push–pull DC/DC converter for DC microgrid application,” IEEE Trans. Ind. Appl., vol. 52, no. 2, pp. 1577–1587, 2015. CR - [57] R. Kalpana, “Configurations of modular push-pull buck dc-dc converters for 12KW telecom SMPS and its design,” in 2016 Biennial International Conference on Power and Energy Systems: Towards Sustainable Energy (PESTSE), 2016, pp. 1–7. CR - [58] H. Zenk, “Comparison of the Performance of Photovoltaic Power Generation‐Consumption System with Push‐Pull Converter under the Effect of Five Different Types of Controllers,” Int. J. Photoenergy, vol. 2019, no. 1, p. 3810970, 2019. CR - [59] H. Givi, E. Farjah, and T. Ghanbari, “A comprehensive monitoring system for online fault diagnosis and aging detection of non-isolated DC–DC converters’ components,” IEEE Trans. Power Electron., vol. 34, no. 7, pp. 6858–6875, 2018. CR - [60] S. N. Singh, “Selection of non-isolated DC-DC converters for solar photovoltaic system,” Renew. Sustain. Energy Rev., vol. 76, pp. 1230–1247, 2017. CR - [61] T. K. Nizami and C. Mahanta, “An intelligent adaptive control of DC–DC buck converters,” J. Franklin Inst., vol. 353, no. 12, pp. 2588–2613, 2016. CR - [62] B. B. Naik and A. J. Mehta, “Sliding mode controller with modified sliding function for DC-DC Buck Converter,” ISA Trans., vol. 70, pp. 279–287, 2017. CR - [63] C. Nan, R. Ayyanar, and Y. Xi, “A 2.2-MHz active-clamp buck converter for automotive applications,” IEEE Trans. Power Electron., vol. 33, no. 1, pp. 460–472, 2017. CR - [64] J. Wang, J. Rong, and L. Yu, “Dynamic prescribed performance sliding mode control for DC–DC buck converter system with mismatched time-varying disturbances,” ISA Trans., vol. 129, pp. 546–557, 2022. CR - [65] W. Chen, Z. Ge, Y. Cheng, H. Du, Q. Du, and M. Yu, “Current-constrained finite-time control algorithm for DC-DC buck converter,” J. Franklin Inst., vol. 358, no. 18, pp. 9467–9482, 2021. CR - [66] T. K. Nizami, A. Chakravarty, and C. Mahanta, “Time bound online uncertainty estimation based adaptive control design for DC–DC buck converters with experimental validation,” IFAC J. Syst. Control, vol. 15, p. 100127, 2021. CR - [67] İ. Yazici, “Robust voltage‐mode controller for DC–DC boost converter,” IET Power Electron., vol. 8, no. 3, pp. 342–349, 2015. CR - [68] F. L. Tofoli, D. de C. Pereira, W. Josias de Paula, and D. de S. Oliveira Junior, “Survey on non‐isolated high‐voltage step‐up dc–dc topologies based on the boost converter,” IET power Electron., vol. 8, no. 10, pp. 2044–2057, 2015. CR - [69] T. K. Nizami and A. Chakravarty, “Neural network integrated adaptive backstepping control of DC-DC boost converter,” IFAC-PapersOnLine, vol. 53, no. 1, pp. 549–554, 2020. CR - [70] S. Vadi, F. B. Gurbuz, S. Sagiroglu, and R. Bayindir, “Optimization of pi based buck-boost converter by particle swarm optimization algorithm,” in 2021 9th International Conference on Smart Grid (icSmartGrid), 2021, pp. 295–301. CR - [71] K. Prag, M. Woolway, and T. Celik, “Data-driven model predictive control of DC-to-DC buck-boost converter,” IEEE Access, vol. 9, pp. 101902–101915, 2021. CR - [72] N. Rana and S. Banerjee, “Interleaved tri-state buck-boost converter with fast transient response and lower ripple,” in 2019 IEEE Transportation Electrification Conference (ITEC-India), 2019, pp. 1–5. CR - [73] N. Rana, S. Banerjee, S. K. Giri, A. Trivedi, and S. S. Williamson, “Modeling, analysis and implementation of an improved interleaved buck-boost converter,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 68, no. 7, pp. 2588–2592, 2021. CR - [74] E. Babaei, M. E. S. Mahmoodieh, and H. M. Mahery, “Operational modes and output-voltage-ripple analysis and design considerations of buck–boost DC–DC converters,” IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 381–391, 2011. CR - [75] K. Wang, D. Liu, and L. Wang, “The implementation of synergetic control for a DC-DC buck-boost converter,” Procedia Comput. Sci., vol. 199, pp. 900–907, 2022. CR - [76] M. Martinez-Lopez, J. Moreno-Valenzuela, and W. He, “A robust nonlinear PI-type controller for the DC–DC buck–boost power converter,” ISA Trans., vol. 129, pp. 687–700, 2022. CR - [77] S. Kumar, R. Kumar, and N. Singh, “Performance of closed loop SEPIC converter with DC-DC converter for solar energy system,” in 2017 4th International Conference on Power, Control & Embedded Systems (ICPCES), 2017, pp. 1–6. CR - [78] L. Kathi, A. Ayachit, D. K. Saini, A. Chadha, and M. K. Kazimierczuk, “Open-loop small-signal modeling of Cuk DC-DC converter in CCM by circuit-averaging technique,” in 2018 IEEE Texas Power and Energy Conference (TPEC), 2018, pp. 1–6. CR - [79] B. P. Mokal and K. Vadirajacharya, “Extensive modeling of DC-DC Cuk converter operating in continuous conduction mode,” in 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT), 2017, pp. 1–5. CR - [80] M. Verma and S. S. Kumar, “Hardware design of sepic converter and its analysis,” in 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT), 2018, pp. 1–4. CR - [81] S. Sivakumar, M. J. Sathik, P. S. Manoj, and G. Sundararajan, “An assessment on performance of DC–DC converters for renewable energy applications,” Renew. Sustain. Energy Rev., vol. 58, pp. 1475–1485, 2016. CR - [82] M. B. Ferrera, S. P. Litran, E. D. Aranda, and J. M. A. Marquez, “A converter for bipolar DC link based on SEPIC-Cuk combination,” IEEE Trans. Power Electron., vol. 30, no. 12, pp. 6483–6487, 2015. CR - [83] J. Marjani, A. Imani, A. Hekmati, and E. Afjei, “A new dual output DC-DC converter based on SEPIC and Cuk converters,” in 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2016, pp. 946–950. CR - [84] A. H. R. Rosa, L. M. F. Morais, G. O. Fortes, and S. I. S. Júnior, “Practical considerations of nonlinear control techniques applied to static power converters: A survey and comparative study,” Int. J. Electr. Power Energy Syst., vol. 127, p. 106545, 2021. CR - [85] R. K. Pachauri and Y. K. Chauhan, “Modeling and simulation analysis of PV fed Cuk, Sepic, Zeta and Luo DC-DC converter,” in 2016 IEEE 1st international conference on power electronics, intelligent control and energy systems (ICPEICES), 2016, pp. 1–6. CR - [86] K. Manikandan, A. Sivabalan, R. Sundar, and P. Surya, “A study of landsman, sepic and zeta converter by particle swarm optimization technique,” in 2020 6th international conference on advanced computing and communication systems (ICACCS), 2020, pp. 1035–1038. CR - [87] M. Kaouane, A. Boukhelifa, and A. Cheriti, “Implementation of incremental-conductance MPPT algorithm in a photovoltaic conversion system based on DC-DC ZETA converter,” in 2016 8th International Conference on Modelling, Identification and Control (ICMIC), 2016, pp. 612–617. CR - [88] J. S. Alagesan, J. Gnanavadivel, N. S. Kumar, and K. S. K. Veni, “Design and Simulation of Fuzzybased DC-DC Interleaved Zeta Converter for Photovoltaic Applications,” in 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), 2018, pp. 704–709. CR - [89] M. M. Nishat, M. R. K. Shagor, H. Akter, S. A. Mim, and F. Faisal, “An optimal design of PID controller for DC-DC zeta converter using particle swarm optimization,” in 2020 23rd International Conference on Computer and Information Technology (ICCIT), 2020, pp. 1–6. CR - [90] A. Raj, S. R. Arya, and J. Gupta, “Solar PV array-based DC–DC converter with MPPT for low power applications,” Renew. Energy Focus, vol. 34, pp. 109–119, 2020. CR - [91] H. Sarkawi, Y. Ohta, and P. Rapisarda, “On the switching control of the DC–DC zeta converter operating in continuous conduction mode,” IET Control Theory Appl., vol. 15, no. 9, pp. 1185–1198, 2021. CR - [92] N. Vosoughi, M. Abbasi, E. Abbasi, and M. Sabahi, “A Zeta‐based switched‐capacitor DC‐DC converter topology,” Int. J. Circuit Theory Appl., vol. 47, no. 8, pp. 1302–1322, 2019. CR - [93] R. F. Rajakumari and M. S. Ramkumar, “Design considerations and performance analysis based on ripple factors and switching loss for converter techniques,” Mater. Today Proc., vol. 37, pp. 2681–2686, 2021. CR - [94] N. Ghasemi, F. Zare, C. Langton, and A. Ghosh, “A new unequal DC link voltage configuration for a single phase multilevel converter to reduce low order harmonics,” in Proceedings of the 2011 14th European Conference on Power Electronics and Applications, 2011, pp. 1–9. CR - [95] S. Du, B. Wu, N. R. Zargari, and Z. Cheng, “A flying-capacitor modular multilevel converter for medium-voltage motor drive,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 2081–2089, 2016. CR - [96] S. Qin, Y. Lei, Z. Ye, D. Chou, and R. C. N. Pilawa-Podgurski, “A high-power-density power factor correction front end based on seven-level flying capacitor multilevel converter,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 7, no. 3, pp. 1883–1898, 2018. CR - [97] C. B. Barth et al., “Design and control of a GaN-based, 13-level, flying capacitor multilevel inverter,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, no. 3, pp. 2179–2191, 2019. CR - [98] A. Marquez et al., “Discontinuous-PWM method for multilevel N-cell cascaded H-bridge converters,” IEEE Trans. Ind. Electron., vol. 68, no. 9, pp. 7996–8005, 2020. CR - [99] A. M. Alcaide et al., “Variable-angle PS-PWM technique for multilevel cascaded H-bridge converters with large number of power cells,” IEEE Trans. Ind. Electron., vol. 68, no. 8, pp. 6773–6783, 2020. CR - [100] Y. Koyama, Y. Nakazawa, H. Mochikawa, A. Kuzumaki, K. Sano, and N. Okada, “A transformerless 6.6-kV STATCOM based on a hybrid cascade multilevel converter using SiC devices,” IEEE Trans. Power Electron., vol. 33, no. 9, pp. 7411–7423, 2017. CR - [101] H. D. Tafti, A. I. Maswood, G. Konstantinou, C. D. Townsend, P. Acuna, and J. Pou, “Flexible control of photovoltaic grid-connected cascaded H-bridge converters during unbalanced voltage sags,” IEEE Trans. Ind. Electron., vol. 65, no. 8, pp. 6229–6238, 2017. CR - [102] F. A. Abbas, T. A. Abdul-Jabbar, A. A. Obed, A. Kersten, M. Kuder, and T. Weyh, “A Comprehensive Review and Analytical Comparison of Non-Isolated DC-DC Converters for Fuel Cell Applications,” Energies, vol. 16, no. 8. 2023. doi: 10.3390/en16083493. CR - [103] S. Pourjafar, H. Afshari, P. Mohseni, O. Husev, O. Matiushkin, and N. Shabbir, “Comprehensive Comparison of Isolated High Step-up DC-DC Converters for Low Power Application,” IEEE Open J. Power Electron., vol. 5, pp. 1149–1161, 2024, doi: 10.1109/OJPEL.2024.3433554. UR - https://dergipark.org.tr/en/pub/bajece/issue//1713384 L1 - https://dergipark.org.tr/en/download/article-file/4932728 ER -