TY - JOUR T1 - Hidden engineering in molecular silence: Examination of biomineralization structure in the shell of Magallana gigas (Thunberg, 1793) species using X-ray diffraction (XRD) AU - Kızılkaya, Bayram AU - Yıldız, Harun AU - Şenol Bahçeci, Dilek PY - 2025 DA - June Y2 - 2025 DO - 10.33714/masteb.1714701 JF - Marine Science and Technology Bulletin JO - Mar. Sci. Tech. Bull. PB - Adem Yavuz SÖNMEZ WT - DergiPark SN - 2147-9666 SP - 94 EP - 102 VL - 14 IS - 2 LA - en AB - This study was conducted using X-ray diffraction (XRD) analysis to determine the mineralogical composition of the shell structure of Magallana gigas (Pacific oyster). The analyses revealed that the shell is predominantly composed of calcium carbonate (CaCO3), with the structure predominantly found in the crystalline calcite phase. XRD patterns were thoroughly evaluated in the 20°–80° 2θ range, and high-intensity diffraction peaks specific to the calcite phase were detected, particularly in the 40°–49° and 60°–78° regions. Signals related to the aragonite phase were limited and of low intensity. The biomineralization process plays a central role in organisms’ adaptation to environmental factors and structural protection. Marine mollusks like M. gigas provide physical protection and gain resilience to chemical variability in their habitats through biomineralization mechanisms that govern shell formation. The dominance of calcite in the shells is demonstrated comprehensively by our XRD data, as the preferential formation of the calcite phase in this species’ shell structure is favored for its advantages in long-term environmental stability and biological energy efficiency. Additionally, the obtained data make significant contributions to understanding the biochemical and environmental interactions involved in shell formation in marine organisms. In this regard, the study makes significant contributions for future research on the formation, function, and ecological importance of biogenic minerals. KW - Magallana gigas KW - X-ray diffraction (XRD) KW - Biomineralization KW - Calcium carbonate KW - Aragonite CR - Campodoni, E., Montanari, M., Artusi, C., Bassi, G., Furlani, F., Montesi, M., Panseri, S., Sandri, M., & Tampieri, A. (2021). Calcium-based biomineralization: A smart approach for the design of novel multifunctional hybrid materials. Journal of Composites Science, 5(10), 278. https://doi.org/10.3390/jcs5100278 CR - Chen, Y., Feng, Y., Deveaux, J. G., Masoud, M. A., Chandra, F. S., Chen, H., Zhang, D., & Feng, L. (2019). Biomineralization forming process and bio-inspired nanomaterials for biomedical application: A review. Minerals, 9(2), 68. https://doi.org/10.3390/min9020068 CR - Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S., & Visscher, P. T. (2009). Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96, 141–162. https://doi.org/10.1016/j.earscirev.2008.10.005 CR - Ehrlich, H., Bailey, E., Wysokowski, M., & Jesionowski, T. (2021). Forced biomineralization: A review. Biomimetics, 6(3), 46. https://doi.org/10.3390/biomimetics6030046 CR - Figuerola, B., Hancock, A. M., Bax, N., Cummings, V. J., Downey, R., Griffiths, H. J., Smith, J., & Stark, J. S. (2021). A review and meta-analysis of potential impacts of ocean acidification on marine calcifiers from the Southern Ocean. Frontiers in Marine Science, 8, 584445. https://doi.org/10.3389/fmars.2021.584445 CR - Gilbert, P. U. P. A., Bergmann, K. D., Boekelheide, N., Tambutté, S., Mass, T., Marin, F., Adkins, J. F., Erez, J., Gilbert, B., Knutson, V., Cantine, M., Ortega Hernández, J., & Knoll, A. H. (2022). Biomineralization: Integrating mechanism and evolutionary history. Science Advances, 8(10), eabl9653. https://doi.org/10.1126/sciadv.abl9653 CR - Hamester, M. R. R., Balzer, P. S., & Becker, D. (2012). Characterization of calcium carbonate obtained from oyster and mussel shells and incorporation in polypropylene. Material Research, 15(2), 204–208. https://doi.org/10.1590/S1516-14392012005000014 CR - Hossain, M. S., & Ahmed, S. (2023). Crystallographic characterization of naturally occurring aragonite and calcite phase: Rietveld refinement. Journal of Saudi Chemical Society, 27(3), 101649. https://doi.org/10.1016/j.jscs.2023.101649 CR - Iglikowska, A., Ronowicz, M., Humphreys-Williams, E., & Kukliński, P. (2018). Trace element accumulation in the shell of the Arctic cirriped Balanus balanus. Hydrobiologia, 818, 43–56. https://doi.org/10.1007/s10750-018-3564-5 CR - Ituen, E. U. (2015). Mechanical and chemical properties of selected mullusc shells in Nigeria. International Journal of Agricultural Policy and Research, 3(1), 53–59. https://doi.org/10.15739/IJAPR.026 CR - Kızılkaya, B., Yıldız, H., & Vural, P. (2024). Shell composition analysis of European flat oyster (Ostrea edulis, Linnaeus 1758) from Marmara Sea, Türkiye: Insights into chemical properties. Marine Science and Technology Bulletin, 13(2), 142-150. https://doi.org/10.33714/masteb.1493896 CR - Louis, V., Besseau, L., & Lartaud, F. (2022). Step in time: biomineralisation of Bivalve’s shell. Frontiers in Marine Science, 9, 906085. https://doi.org/10.3389/fmars.2022.906085 CR - Marin, F., Luquet, G., Marie, B. & Medakovic, D. (2007). Molluscan shell proteins: Primary structure, origin, and evolution. Current Topics in Developmental Biology, 80, 209–276. https://doi.org/10.1016/S0070-2153(07)80006-8 CR - McCauley, J. W. (1981). Calcite group. In Mineralogy. Encyclopedia of Earth Science. Springer. https://doi.org/10.1007/0-387-30720-6_20 CR - Mititelu, M., Stanciu, G., Drăgănescu, D., Ioniță, A. C., Neacșu, S. M., Dinu, M., Stefan-van Staden, R. I., & Moroșan, E. (2022). Mussel shells, a valuable calcium resource for the pharmaceutical industry. Marine Drugs, 20(1), 25. https://doi.org/10.3390/md20010025 CR - Muhammad Mailafiya, M., Abubakar, K., Danmaigoro, A., Musa Chiroma, S., Bin Abdul Rahim, E., Aris Mohd Moklas, M., & Abu Bakar Zakaria, Z. (2019). Cockle shell-derived calcium carbonate (Aragonite) nanoparticles: A dynamite to nanomedicine. Applied Sciences, 9(14), 2897. https://doi.org/10.3390/app9142897 CR - Murdock, D. J. E. (2020). The ‘Biomineralization Toolkit’ and the origin of animal skeletons. Biological Reviews, 95, 1372–1392. https://doi.org/10.1111/brv.12614 CR - Qin, K., Zheng, Z., Wang, J., Pan, H., & Tang, R. (2024). Biomineralization strategy: From material manufacturing to biological regulation. Giant, 19, 100317. https://doi.org/10.1016/j.giant.2024.100317 CR - Reddy, M. S. (2013). Biomineralization of calcium carbonates and their engineered applications: A review. Frontiers in Microbiology, 4, 314. https://doi.org/10.3389/fmicb.2013.00314 CR - Skinner, H. C. & Jahren, A. H. (2003). Biomineralization. In H. D. Holland & K. K. Turekian (Eds.), Treatise on Geochemistry: Volume 8: Biogeochemistry (pp. 117–184). Elsevier Science. https://doi.org/10.1016/B0-08-043751-6/08128-7 CR - Weiner, S. & Dove, P. M. (2003). An overview of biomineralization processes and the problem of the vital effect. Reviews in Mineralogy and Geochemistry, 54(1), 1-29. https://doi.org/10.2113/0540001 UR - https://doi.org/10.33714/masteb.1714701 L1 - https://dergipark.org.tr/en/download/article-file/4937736 ER -