TY - JOUR T1 - A Study on Lacunary $\mathcal{I-}$Statistical Convergence in Gradual Normed Linear Spaces AU - Gumus, Hafize AU - Bolat, Seyma PY - 2025 DA - October Y2 - 2025 DO - 10.36753/mathenot.1720763 JF - Mathematical Sciences and Applications E-Notes JO - Math. Sci. Appl. E-Notes PB - Murat TOSUN WT - DergiPark SN - 2147-6268 SP - 179 EP - 189 VL - 13 IS - 4 LA - en AB - Following the studies on gradual numbers, which are expressed with membership functions and have many important application areas in daily life, studies on gradual normed linear spaces (GNLS) have also gained speed in recent years. On the other hand, it is thought that the definition of $\mathcal{I-}$statistical convergence, which generalizes many types of convergence, for a sequence in these spaces, and the results obtained will be important. For this reason, lacunary $\mathcal{I-}$statistical convergence in gradual normed linear spaces is defined in this paper. Therefore, more general results were obtained compared to previous studies in this area. KW - $\mathcal{I-}$Convergence KW - $\mathcal{I-}$ statistical convergence KW - Gradual normed linear space KW - Gradual numbers KW - Lacunary sequences KW - Statistical convergence CR - [1] Zadeh, L. A.: Fuzzy sets. Information and Control. 8, 338-353 (1965). CR - [2] Fortin, J., Dubois, D., Fargier, H.: Gradual numbers and their application to fuzzy interval analysis. IEEE Transactions on Fuzzy Systems. 16, 388-402 (2008). CR - [3] Aiche, F., Dubois, D.: Possibility and gradual number approaches to ranking methods for random fuzzy intervals. Communications in Computer and Information Science. 299, 9-18 (2012). CR - [4] Ettefagh, M., Etemad, S., Azari, F. Y.: On some properties of sequences in gradual normed spaces. Asian-European Journal of Mathematics. 1(4), 2050085 (2020) . CR - [5] Ettefagh, M., Azari, F. Y., Etemad, S.: On some topological properties in gradual normed spaces. Facta Universitatis, Series: Mathematics and Informatics. 35, 549-559 (2020). CR - [6] Sadeqi, I., Azari, F. Y.: Gradual normed linear space. Iranian Journal of Fuzzy Systems. 8(5), 131-139 (2011). CR - [7] Debbarma, H., Choudhury, C., Debnath,S.: Studies on some sequence spaces in gradual normed linear space. Applied Mathematics E-Notes. 24, 80-88 (2024). CR - [8] Debbarma, H., Debnath, S.: Some statistically convergent sequence spaces over gradual normed linear space. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis. 32, 55-65 (2025). CR - [9] Debnath, S., Debbarma, H.: On $\mathcal{I-}$statistical convergent difference sequence spaces in GNLS. Advances in Mathematical Sciences and Applications. 33(2), 741-754 (2024). CR - [10] Dubois, D., Prade, H.: Gradual elements in a fuzzy set. Soft Computing. 12, 165-175 (2007). CR - [11] Kostyrko, P., Šalát, T., Wileynski, W.: $\mathcal{I-}$Convergence. Real Analysis Exchange. 26(2), 669-680 (2000). CR - [12] Fast, H.: Sur la convergence statistique. Colloquium Mathematicum. 2, 241-244 (1951). CR - [13] Steinhaus, H.: Sur la convergence ordiniaire et la convergence asymptotique. Colloquium Mathematicum. 2 , 73-84 (1951). CR - [14] Fridy, J. A., Orhan, C.: Lacunary statistical convergence. Pacific Journal of Mathematics. 160, 43-51 (1993). CR - [15] Choudhury, C., Debnath, S.: On lacunary statistical convergence of sequences in gradual normed linear spaces. Annals of the University of Craiova, Mathematics and Computer Science Series. 49(1), 110-119 (2022). CR - [16] Savaş, E., Das, P.: A generalized statistical convergence via ideals. Applied Mathematics Letters. 24, 826-830 (2011). CR - [17] Das, P., Savaş, E.: On $\mathcal{I-}$statistical and $\mathcal{I-}$−lacunary statistical convergence of order $\alpha $. Bulletin of the Iranian Mathematical Society. 40(2), 459-472 (2014). CR - [18] Demir, N., Gümüş, H.: A study on lacunary statistical convergence of multiset sequences. Sigma Journal of Engineering and Natural Sciences. 42(5), 1575-1580 (2024). CR - [19] Choudhury, C., Debnath, S.: On $\mathcal{I-}$convergence of sequences in gradual normed linear spaces. Facta Universitatis-Series Mathematics and Informatics. 36(3), 595-604. (2021). CR - [20] Choudhury, C., Debnath, S.: On I−statistical convergence of sequences in gradual normed linear spaces. Matematicki Vesnik. 74(3), 218-228 (2022). CR - [21] Choudhury, C., Debnath, S., Esi, A.: On $\mathcal{I}^{K}\mathcal{-}$−convergence of sequences in gradual normed linear spaces. The Journal of Analysis. 30, 1455-1465 (2022). UR - https://doi.org/10.36753/mathenot.1720763 L1 - https://dergipark.org.tr/en/download/article-file/4964004 ER -