TY - JOUR T1 - Efficient Hyperparameter-Tuned Convolutional Neural Network for Waste Classification AU - Saraçoğlu, Yaren Didenaz AU - Çetin Kaya, Yasemin PY - 2025 DA - September Y2 - 2025 DO - 10.54287/gujsa.1721478 JF - Gazi University Journal of Science Part A: Engineering and Innovation JO - GU J Sci, Part A PB - Gazi University WT - DergiPark SN - 2147-9542 SP - 815 EP - 835 VL - 12 IS - 3 LA - en AB - Today, increasing consumption habits and industrial activities have made waste management a major environmental issue on a global scale. Traditional waste classification methods cannot provide sufficient efficiency due to high labor costs and human errors. Our primary goal in this study is to design a new custom convolutional neural network (CNN) model that yields the highest accuracy and to find the optimal hyperparameters for this purpose. Using the TrashNet dataset, classification was performed in six classes: cardboard, glass, metal, paper, plastic, plastic and other wastes. We also compared the proposed custom CNN model with the seven pre-trained CNN models in the literature. According to the experimental results, the proposed custom CNN model showed the highest success with 95.03% accuracy and 95% F1 score. The results show that deep learning methods can work with high accuracy in waste classification problems and provide more reliable results compared to traditional methods. KW - Waste Classification KW - Deep Learning KW - CNN KW - TrashNet CR - Ahmed Khan, H., Naqvi, S. S., Alharbi, A. A. K., Alotaibi, S., & Alkhathami, M. (2024). Enhancing trash classification in smart cities using federated deep learning. Scientific Reports, 14(1), 11816. https://doi.org/10.1038/s41598-024-62003-4 CR - Ajayakumar, J., Curtis, A. J., Rouzier, V., Pape, J. W., Bempah, S., Alam, M. T., Alam, Md. M., Rashid, M. H., Ali, A., & Morris, J. G. (2021). Exploring convolutional neural networks and spatial video for on-the-ground mapping in informal settlements. International Journal of Health Geographics, 20(1), 5. https://doi.org/10.1186/s12942-021-00259-z CR - Ali, M. A. S., P. P., F. R., & Salama Abd Elminaam, D. (2023). Correction: Ali et al. A Feature Selection Based on Improved Artificial Hummingbird Algorithm Using Random Opposition-Based Learning for Solving Waste Classification Problem. Mathematics 2022, 10, 2675. Mathematics, 11(9), 2195. https://doi.org/10.3390/math11092195 CR - Alrayes, F. S., Asiri, M. M., Maashi, M. S., Nour, M. K., Rizwanullah, M., Osman, A. E., Drar, S., & Zamani, A. S. (2023). Waste classification using vision transformer based on multilayer hybrid convolution neural network. Urban Climate, 49, 101483. https://doi.org/10.1016/j.uclim.2023.101483 CR - Çetin-Kaya, Y. (2024). Equilibrium Optimization-Based Ensemble CNN Framework for Breast Cancer Multiclass Classification Using Histopathological Image. Diagnostics, 14(19). https://doi.org/10.3390/diagnostics14192253 CR - Cheyi, J., & Çetin Kaya, Y. (2024). Advanced CNN-Based Classification and Segmentation for Enhanced Breast Cancer Ultrasound Imaging. Gazi University Journal of Science Part A: Engineering and Innovation, 11(4), 647–667. https://doi.org/10.54287/gujsa.1529857 CR - Feng, Z., Yang, J., Chen, L., Chen, Z., & Li, L. (2022). An Intelligent Waste-Sorting and Recycling Device Based on Improved EfficientNet. International Journal of Environmental Research and Public Health, 19(23), 15987. https://doi.org/10.3390/ijerph192315987 CR - Güneş, A., & Çetin Kaya, Y. (2024). Evrişimsel Sinir Ağları ile Görüntülerde Gürültü Türünü Saptama. Bilgisayar Bilimleri ve Mühendisliği Dergisi, 17(1), 75–89. https://doi.org/10.54525/bbmd.1454595 CR - Guo, D., Yang, Q., Zhang, Y.-D., Jiang, T., & Yan, H. (2021). Classification of Domestic Refuse in Medical Institutions Based on Transfer Learning and Convolutional Neural Network. Computer Modeling in Engineering & Sciences, 127(2), 599–620. https://doi.org/10.32604/cmes.2021.014119 CR - Gyawali, D., Regmi, A., Shakya, A., Gautam, A., & Shrestha, S. (2020). Comparative Analysis of Multiple Deep CNN Models for Waste Classification. https://doi.org/10.48550/arXiv.2004.02168 CR - Jahanbakhshi, A., Momeny, M., Mahmoudi, M., & Radeva, P. (2021). Waste management using an automatic sorting system for carrot fruit based on image processing technique and improved deep neural networks. Energy Reports, 7, 5248–5256. https://doi.org/10.1016/j.egyr.2021.08.028 CR - Jayawickrama, N., Ojala, R., Pirhonen, J., Kivekäs, K., & Tammi, K. (2022). Classification of Trash and Valuables with Machine Vision in Shared Cars. Applied Sciences, 12(11), 5695. https://doi.org/10.3390/app12115695 CR - Jiang, S., Xu, Z., Kamran, M., Zinchik, S., Paheding, S., McDonald, A. G., Bar-Ziv, E., & Zavala, V. M. (2021). Using ATR-FTIR spectra and convolutional neural networks for characterizing mixed plastic waste. Computers & Chemical Engineering, 155, 107547. https://doi.org/10.1016/j.compchemeng.2021.107547 CR - Kaya, M. (2025). Efficient Diagnosis of Retinal Diseases Using Convolutional Neural Networks. Gazi University Journal of Science Part A: Engineering and Innovation, 12(1), 15–35. https://doi.org/10.54287/gujsa.1592915 CR - Kaya, M., & Çetin-Kaya, Y. (2021). Seamless computation offloading for mobile applications using an online learning algorithm. Computing, 103(5), 771–799. https://doi.org/10.1007/s00607-020-00873-y CR - Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. http://code.google.com/p/cuda-convnet/ CR - Lapo, J. R., & Cumbicus-Pineda, O. M. (2024). Detection of recyclable solid waste using convolutional neural networks and PyTorch. IEEE Latin America Transactions, 22(6), 475–483. https://doi.org/10.1109/TLA.2024.10534304 CR - Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. https://doi.org/10.1109/5.726791 CR - Lin, K., Zhao, Y., Gao, X., Zhang, M., Zhao, C., Peng, L., Zhang, Q., & Zhou, T. (2022). Applying a deep residual network coupling with transfer learning for recyclable waste sorting. Environmental Science and Pollution Research, 29(60), 91081–91095. https://doi.org/10.1007/s11356-022-22167-w CR - Lu, G., Wang, Y., Yang, H., & Zou, J. (2020). One-dimensional convolutional neural networks for acoustic waste sorting. Journal of Cleaner Production, 271, 122393. https://doi.org/10.1016/j.jclepro.2020.122393 CR - Melinte, D. O., Travediu, A.-M., & Dumitriu, D. N. (2020). Deep Convolutional Neural Networks Object Detector for Real-Time Waste Identification. Applied Sciences, 10(20), 7301. https://doi.org/10.3390/app10207301 CR - Mookkaiah, S. S., Thangavelu, G., Hebbar, R., Haldar, N., & Singh, H. (2022). Design and development of smart Internet of Things–based solid waste management system using computer vision. Environmental Science and Pollution Research, 29(43), 64871–64885. https://doi.org/10.1007/s11356-022-20428-2 CR - Ping, P., Xu, G., Kumala, E., & Gao, J. (2020). Smart Street Litter Detection and Classification Based on Faster R-CNN and Edge Computing. International Journal of Software Engineering and Knowledge Engineering, 30(04), 537–553. https://doi.org/10.1142/S0218194020400045 CR - Qin, L. W., Ahmad, M., Ali, I., Mumtaz, R., Zaidi, S. M. H., Alshamrani, S. S., Raza, M. A., & Tahir, M. (2021). Precision Measurement for Industry 4.0 Standards towards Solid Waste Classification through Enhanced Imaging Sensors and Deep Learning Model. Wireless Communications and Mobile Computing, 2021(1). https://doi.org/10.1155/2021/9963999 CR - Özatılgan, A. & Kaya, M. (2024). A Lightweight Convolutional Neural Network for Classification of Brain Tumors Using Magnetic Resonance Imaging. Sakarya University Journal of Computer and Information Sciences, 7(3). 482-493. https://doi.org/10.35377/saucis...1518139 CR - Shi, C., Tan, C., Wang, T., & Wang, L. (2021). A Waste Classification Method Based on a Multilayer Hybrid Convolution Neural Network. Applied Sciences, 11(18), 8572. https://doi.org/10.3390/app11188572 CR - T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı (2022). 2022 Yılı Atık İstatistikleri. https://webdosya.csb.gov.tr/db/ced/icerikler/2022-yili-atik--stat-st-k-bulten-_-20241225091056.doc CR - Tran, B.-G., & Nguyen, D.-L. (2022). Simple and Efficient Convolutional Neural Network for Trash Classification. Annals of Computer Science and Information Systems, 33, 255–260. https://doi.org/10.15439/2022R01 CR - Wang, C., Qin, J., Qu, C., Ran, X., Liu, C., & Chen, B. (2021). A smart municipal waste management system based on deep-learning and Internet of Things. Waste Management, 135, 20–29. https://doi.org/10.1016/j.wasman.2021.08.028 CR - Wang, J. (2024). Application research of image classification algorithm based on deep learning in household garbage sorting. Heliyon, 10(9), e29966. https://doi.org/10.1016/j.heliyon.2024.e29966 CR - Wang, N., Wu, Q., Wang, M., He, D., & Fang, H. (2024). A novel recycling method using machine vision to assist in the processing of stacked waste fans. Journal of Material Cycles and Waste Management, 26(3), 1649–1666. https://doi.org/10.1007/s10163-024-01916-8 CR - World Bank. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. https://openknowledge.worldbank.org/handle/10986/30317 CR - Yang, M., & Thung, G. (2016). Classification of Trash for Recyclability Status. CR - Yang, Z., Xia, Z., Yang, G., & Lv, Y. (2022). A Garbage Classification Method Based on a Small Convolution Neural Network. Sustainability, 14(22), 14735. https://doi.org/10.3390/su142214735 CR - Zhang, H., Cao, H., Zhou, Y., Gu, C., & Li, D. (2023). Hybrid deep learning model for accurate classification of solid waste in the society. Urban Climate, 49, 101485. https://doi.org/10.1016/j.uclim.2023.101485 CR - Zhou, K., Oh, S.-K., Pedrycz, W., Qiu, J., Fu, Z., & Ryu, B.-G. (2022). Design of data feature-driven 1D/2D convolutional neural networks classifier for recycling black plastic wastes through laser spectroscopy. Advanced Engineering Informatics, 53, 101695. https://doi.org/10.1016/j.aei.2022.101695 UR - https://doi.org/10.54287/gujsa.1721478 L1 - https://dergipark.org.tr/en/download/article-file/4967216 ER -