TY - JOUR T1 - Tailoring Admittance, Conductance, and Susceptance in TPU/Activated Carbon Films for Flexible Electronics AU - Kurnaz, Sedat PY - 2025 DA - September Y2 - 2025 DO - 10.54287/gujsa.1726229 JF - Gazi University Journal of Science Part A: Engineering and Innovation JO - GU J Sci, Part A PB - Gazi University WT - DergiPark SN - 2147-9542 SP - 788 EP - 797 VL - 12 IS - 3 LA - en AB - In this study, thermoplastic polyurethane (TPU) composites with varying amounts of activated carbon (AC) (0, 1, 3, 5, 7, and 10 wt%) were fabricated using a solvent-casting method. Scanning electron microscopy (SEM) revealed homogeneous filler dispersion up to intermediate loadings (3-5 wt%), while higher contents (7-10 wt%) led to surface cracks and particle agglomerations. Fourier-transform infrared spectroscopy (FTIR) results showed no evidence of strong chemical bonding between AC particles and the TPU matrix, although minor spectral shifts were consistent with weak physical interactions. Thermal gravimetric analysis (TGA) indicated improved thermal stability at higher AC loadings. Tensile tests showed enhanced mechanical strength up to 5 wt%, though flexibility decreased at higher concentrations (7–10 wt%). Electrical characterization (admittance (Y), conductance (G), and susceptance (B)) from 1 kHz–10 MHzrevealed a clear percolation threshold (~7 wt%), where conductivity sharply increased due to conductive network formation. At 10 MHz, the composite with 10 wt% AC exhibited the highest performance (Y ~114.8 µS, G ~58.8 µS, |B| ~114.1 µS). Jonscher power-law analysis indicated hopping conduction below 7 wt% AC, whereas the 10 wt% sample transitioned into quasi-metallic conduction behavior due to conductive network formation. KW - Activated Carbon KW - Admittance KW - Conductance KW - Frequency KW - Susceptance KW - Polyurethane CR - Aguiar, R., Miller, R. E., & Petel, O. E. (2020). Synthesis and characterization of partially silane-terminated polyurethanes reinforced with acid-treated halloysite nanotubes for transparent armour systems. Scientific Reports, 10, 13805. https://doi.org/10.1038/s41598-020-70661-3 CR - Benlikaya, R., Slobodian, P., & Riha, P. (2013). Enhanced strain-dependent electrical resistance of polyurethane composites with embedded oxidized multiwalled carbon nanotube networks. Journal of Nanomaterials, 1–10. https://doi.org/10.1155/2013/327597 CR - Bertolini, M. C., Ramoa, S. D. A. S., Merlini, C., Barra, G. M. O., Soares, B. G., & Pegoretti, A. (2020). Hybrid composites based on thermoplastic polyurethane with a mixture of carbon nanotubes and carbon black modified with polypyrrole for electromagnetic shielding. Frontiers in Materials, 7, 174. https://doi.org/10.3389/fmats.2020.00174 CR - Chilaka, N., & Ghosh, S. (2014). Semi-IPN PEG-PU/PMMA-Montmorillonite nanocomposites: dielectric and conductivity studies. Electrochimica Acta, 134, 232–241. https://doi.org/10.1016/j.electacta.2014.04.114 CR - Choi, Y., Hwang, B., Meeseepong, M., Hanif, A., Ramasundaram, S., Tran, T. Q., & Lee, N.-E. (2019). Stretchable and transparent nanofiber-networked electrodes based on nanocomposites of polyurethane/reduced graphene oxide/silver nanoparticles with high dispersion and fused junctions. Nanoscale. https://doi.org/10.1039/c8nr10170a CR - Coğalmış, F. T., Demirelli, K., Barım, E., Ük, N., Ünlü C., Şenkal, B., F., Dere, A., Tuncer, H., Yakuphanoğlu, F. (2024). Preparation of carbon dot/polyaniline composites as voltage based dielectric material for capacitor applications. Surfaces and Interfaces, 55, 105487. https://doi.org/10.1016/j.surfin.2024.105487 CR - Dang, Z. M., Yuan, J. K., Zha, J. W., Zhou, T., Li, S. T., Hu, G. H. (2012). Fundamentals, processes, and applications of high-permittivity polymer-matrix composites. Progress in Materials Science, 57, 660–723. https://doi.org/10.1016/j.pmatsci.2011.08.001 CR - Dinesh, P., Renukappa, N. M., & Siddaramaiah. (2010). Impedance and susceptance characterization of multiwalled carbon nanotubes with high density polyethylene-carbon black nanocomposites. Integrated Ferroelectrics, 116, 128–136. https://doi.org/10.1080/10584587.2010.503519 CR - Fang, Z., Huang, L., & Fu, J. (2022). Research status of graphene polyurethane composite coating. Coatings, 12(2), 264. https://doi.org/10.3390/coatings12020264 CR - Gómez, J., Villaro, E., Navas, A., & Recio, I. (2017). Testing the influence of the temperature, RH and filler type and content on the universal power law for new reduced graphene oxide TPU composites. Materials Research Express, 4(10), 105020. https://doi.org/10.1088/2053-1591/aa8e11 CR - Jonscher, A. K. (1999). Dielectric relaxation in solids. Journal of Physics D: Applied Physics, 32(14), R57. https://doi.org/10.1088/0022-3727/32/14/201 CR - Kalini, A., Gatos, K. G., Karahaliou, P. K., Papathanassiou, A. N., & Kyritsis, A. (2010). Probing the dielectric response of polyurethane/alumina nanocomposites. Journal of Polymer Science Part B: Polymer Physics, 48(22), 2346–2354. https://doi.org/10.1002/polb.22120 CR - Khalid, M. Y., Kamal A., Otabil, A., Mamoun, O., & Liao, K. (2023). Graphene/epoxy nanocomposites for improved fracture toughness: A focused review on toughening mechanism. Chemical Engineering Journal Advances, 16, 100537. https://doi.org/10.1016/j.ceja.2023.100537 CR - Kurnaz, S. (2025). Influence of activated carbon concentration on the dielectric, conductivity and impedance properties of TPU composites. Journal of Material Science: Materials in Electronics, 36, 1083. https://doi.org/10.1007/s10854-025-15154-7 CR - Liu, S., Duan, R., He, S., Liu, H., Huang, M., Liu, X., Liu, W., Zhu, C. (2022). Research progress on dielectric properties of PU and its application on capacitive sensors and OTFTs. Reactive and Functional Polymers, 181, 105420. https://doi.org/10.1016/j.reactfunctpolym.2022.105420 CR - Razeghi, M., & Pircheraghi, G. (2018). TPU/graphene nanocomposites: Effect of graphene functionality on the morphology of separated hard domains in thermoplastic polyurethane. Polymer, 148, 169–180. https://doi.org/10.1016/j.polymer.2018.06.026 CR - Rüzgar, Ş., & Eratilla, V. (2024). The effect of deposition temperature on structural, morphological, and dielectric properties of yttria-doped zirconia thin films. Sinop Üniversitesi Fen Bilimleri Dergisi, 9(1), 44-60. https://doi.org/10.33484/sinopfbd.1369460 CR - Simunec, D. P., Breedon, M., & Muhammad, F. R. (2023). Electrical capability of 3D printed unpoled polyvinylidene fluoride (PVDF)/thermoplastic polyurethane (TPU) sensors combined with carbon black and barium. Additive Manufacturing, 73, 103679. https://doi.org/10.1016/j.addma.2023.103679 CR - Staszczak, M., Urbanski, L., Gradys, A., Cristea, M., & Pieczyska, E. A. (2024). Nucleation, development and healing of micro-cracks in shape memory polyurethane subjected to subsequent tension cycles. Polymers, 16(13), 1930. https://doi.org/10.3390/polym16131930 CR - Thabet, A., & Salem, N. (2020). Experimental progress in electrical properties and dielectric strength of polyvinyl chloride thin films under thermal conditions. Transactions on Electrical and Electronic Materials, 21, 165–174. https://doi.org/10.1007/s42341-019-00163-1 CR - Walter, J., Uthayakumar, M., Balamurugan, P., Mierzwinski, D. (2021). The variable frequency conductivity of geopolymers during the long agieng period. Materials, 14(9), 5648. https://doi.org/10.3390/ma14195648 CR - Wang, Y., Zhou, Z., Zhang, J., Tang, J., Wu, P., Wang, K., & Zhao, Y. (2020). Properties of graphene-thermoplastic polyurethane flexible conductive film. Coatings, 10(4), 400. https://doi.org/10.3390/coatings10040400 CR - Zhang, Y., Seveyrat, L., & Lebrun, L. (2021). Correlation between dielectric, mechanical properties and electromechanical performance of functionalized graphene/polyurethane nanocomposites. Composites Science and Technology, 211, 108843. https://doi.org/10.1016/j.compscitech.2021.108843 CR - Zhou, Z.-M., Wang, K., Lin, K., Wang, Y.-H., & Li, J.-Z. (2021). Influence of characteristics of thermoplastic polyurethane on graphene-thermoplastic polyurethane composite film. Micromachines, 12(2), 129. https://doi.org/10.3390/mi12020129 UR - https://doi.org/10.54287/gujsa.1726229 L1 - https://dergipark.org.tr/en/download/article-file/4986940 ER -