TY - JOUR T1 - Improve the solubility of cefpodoxime proxetil by amorphous solid dispersion technique AU - Hussein, Ali Mohammed AU - Hameed, Ghaidaa AU - M. Aziz, Fitua PY - 2025 DA - July Y2 - 2024 DO - 10.12991/jrespharm.1734450 JF - Journal of Research in Pharmacy JO - J. Res. Pharm. PB - Marmara University WT - DergiPark SN - 2630-6344 SP - 1437 EP - 1450 VL - 29 IS - 4 LA - en AB - This research aimed to improve the solubility and stabilize cefpodoxime proxetil (CP), a class IV drug, by amorphous solid dispersion (ASD) technique. Four formulations were prepared by dispersing amorphous CP in soluplus, polyvinylpyrrolidone (PVP K30), and ethyl cellulose (EC) blends in different compositions and ratios. The optimum formulation was stored in accelerated conditions at 40 °C and 75% relative humidity for six months. The drug's solubility and dissolution rate in different systems were explored. Furthermore, Differential Scanning Calorimetry (DSC), X-ray Powder Diffractometry (PXRD), Fourier Transform Infrared spectroscopy (FTIR), and Field Emission Scanning Electron Microscopy (FESEM) were used to examine the physical state of the drug. The antibacterial activity of the drug was evaluated during the experiment. When mixing CP with soluplus and PVP K30 in a 1:1:1 ratio as ASD, the drug solubility at pH 1.2 enhanced about 28 folds than a pure drug, and the dissolution rate increment was observed. The DSC, FTIR, and PXRD data confirmed the drug is amorphous and miscible with these polymers. FESEM revealed particle size reduction. The antibacterial activity was raised. After storage in the accelerated condition, physical investigations indicated that no recrystallization occurred, and this condition had little effect on in vitro drug dissolution and antibacterial activity. This can be a good indicator of the drug's solubility enhancement and physical stability optimization that will make the possibility of preparing this drug in the future as an oral solid dosage form with the possibility of manufacturing with a drug company due to the promising results. KW - Amorphous solid dispersion (ASD) technique KW - cefpodoxime proxetil KW - physical stability KW - solubility CR - [1] Solomon S, Iqbal J, Albadarin AB. Insights into the ameliorating ability of mesoporous silica in modulating drug release in ternary amorphous solid dispersion prepared by hot melt extrusion. Eur J Pharm Biopharm. 2021;165:244-258. https://doi.org/10.1016/j.ejpb.2021.04.017 CR - [2] Pignatello R, Corsaro R, Bonaccorso A, Zingale E, Carbone C, Musumeci T. Soluplus® polymeric nanomicelles improve solubility of BCS-class II drugs. Drug Deliv Transl Res. 2022;12(8):1991-2006. https://doi.org/10.1007/s13346-022-01182-x CR - [3] Han R, Xiong H, Ye Z, Yang Y, Huang T, Jing Q, Lu J, Pan H, Ren F, Ouyang D. Predicting physical stability of solid dispersions by machine learning techniques. J Control Release. 2019;311:16-25. https://doi.org/10.1016/j.jconrel.2019.08.030 CR - [4] Kim J-S, Park H, Kang K-T, Ha E-S, Kim M-S, Hwang S-J. Micronization of a poorly water-soluble drug, fenofibrate, via supercritical-fluid-assisted spray-drying. J Pharm Investig. 2022;52(3):353-366. http://dx.doi.org/10.1007/s40005-022-00565-z CR - [5] Quan W, Kong S, Ouyang Q, Tao J, Lu S, Huang Y, Li S, Luo H. Use of 18ƒÀ-glycyrrhetinic acid nanocrystals to enhance anti-inflammatory activity by improving topical delivery. Colloids Surf B Biointerfaces. 2021;205:111791. https://doi.org/10.1016/j.colsurfb.2021.111791 CR - [6] Tekade AR, Yadav JN. A review on solid dispersion and carriers used therein for solubility enhancement of poorly water soluble drugs. Adv Pharm Bull. 2020;10(3):359-369. https://doi.org/10.34172%2Fapb.2020.044 CR - [7] Suresh K, Matzger AJ. Enhanced drug delivery by dissolution of amorphous drug encapsulated in a water unstable metal.organic framework (MOF). Angew Chem Int Ed. 2019;58(47):16790-16794. https://doi.org/10.1002/anie.201907652 CR - [8] Bhanderi A, Bari F, Al-Obaidi H. Evaluation of the impact of surfactants on miscibility of griseofulvin in spray dried amorphous solid dispersions. J Drug Deliv Sci Technol. 2021;64:102606. http://dx.doi.org/10.1016/j.jddst.2021.102606 CR - [9] Bansal SS, Kaushal AM, Bansal AK. Enthalpy relaxation studies of two structurally related amorphous drugs and their binary dispersions. Drug Dev Ind Pharm. 2010;36(11):1271-1280. https://doi.org/10.3109/03639041003753847 CR - [10] Czajkowski M, Jacobsen A-C, Bauer-Brandl A, Brandl M, Skupin-Mrugalska P. Hydrogenated phospholipid, a promising excipient in amorphous solid dispersions of fenofibrate for oral delivery: Preparation and in-vitro biopharmaceutical characterization. Int J Pharm. 2023; 644:123294. https://doi.org/10.1016/j.ijpharm.2023.123294 CR - [11] Lehmkemper K, Kyeremateng SO, Bartels M, Degenhardt M, Sadowski G. Physical stability of API/polymer-blend amorphous solid dispersions. Eur J Pharm Biopharm. 2018;124:147-157. https://doi.org/10.1016/j.ejpb.2017.12.002 CR - [12] Lust A, Strachan CJ, Veski P, Aaltonen J, Heinamaki J, Yliruusi J, Kogermann K. Amorphous solid dispersions of piroxicam and SoluplusR: Qualitative and quantitative analysis of piroxicam recrystallization during storage. Int J Pharm. 2015;486(1-2):306-314. https://doi.org/10.1016/j.ijpharm.2015.03.079 CR - [13] Trasi NS, Bhujbal SV, Zemlyanov DY, Zhou QT, Taylor LS. Physical stability and release properties of lumefantrine amorphous solid dispersion granules prepared by a simple solvent evaporation approach. Int J Pharm X. 2020 ;2:100052. https://doi.org/10.1016/j.ijpx.2020.100052 CR - [14] Kawakami K, Bi Y, Yoshihashi Y, Sugano K, Terada K. Time-dependent phase separation of amorphous solid dispersions: Implications for accelerated stability studies. J Drug Deliv Sci Technol. 2018;46:197-206. http://dx.doi.org/10.1016/j.jddst.2018.05.016 CR - [15] Yang R, Zhang GG, Kjoller K, Dillon E, Purohit HS, Taylor LS. Phase separation in surfactant-containing amorphous solid dispersions: Orthogonal analytical methods to probe the effects of surfactants on morphology and phase composition. Int J Pharm. 2022;619:121708. https://doi.org/10.1016/j.ijpharm.2022.121708 CR - [16] Luebbert C, Wessner M, Sadowski G. Mutual impact of phase separation/crystallization and water sorption in amorphous solid dispersions. Mol Pharm. 2018;15(2):669-678. https://doi.org/10.1021/acs.molpharmaceut.7b01076 CR - [17] Zeng A, Yao X, Gui Y, Li Y, Jones KJ, Yu L. Inhibiting surface crystallization and improving dissolution of amorphous loratadine by dextran sulfate nanocoating. J Pharm Sci. 2019;108(7):2391-2396. https://doi.org/10.1016/j.xphs.2019.02.018 CR - [18] Bhujbal SV, Mitra B, Jain U, Gong Y, Agrawal A, Karki S, Taylor LS, Kumar S, Tony Zhou Q. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharm Sin B. 2021;11(8):2505-2536. https://doi.org/10.1016%2Fj.apsb.2021.05.014 CR - [19] Mendonsa N, Almutairy B, Kallakunta VR, Sarabu S, Thipsay P, Bandari S, Repka MA. Manufacturing strategies to develop amorphous solid dispersions: An overview. J Drug Deliv Sci Technol. 2020;55:101459. https://doi.org/10.1016%2Fj.jddst.2019.101459 CR - [20] Saha SK, Joshi A, Singh R, Jana S, Dubey K. An investigation into solubility and dissolution improvement of alectinib hydrochloride as a third-generation amorphous solid dispersion. J Drug Deliv Sci Technol. 2023;81:104259. http://dx.doi.org/10.1016/j.jddst.2023.104259 CR - [21] Singh A, Van den Mooter G. Spray drying formulation of amorphous solid dispersions. Adv Drug Del Rev. 2016;100:27-50. https://doi.org/10.1016/j.addr.2015.12.010 [22] Mishra DK, Dhote V, Bhargava A, Jain DK, Mishra PK. Amorphous solid dispersion technique for improved drug delivery: Basics to clinical applications. Drug Deliv Transl Res. 2015;5:552-565. https://doi.org/10.1007/s13346-015-0256-9 CR - [23] Shi X, Xu T, Huang W, Fan B, Sheng X. Stability and bioavailability enhancement of telmisartan ternary solid dispersions: the synergistic effect of polymers and drug-polymer (s) interactions. AAPS PharmSciTech. 2019;20(4):143. https://doi.org/10.1208/s12249-019-1358-3 CR - [24] Thompson SA, Davis Jr DA, Miller DA, Kucera SU, Williams III RO. Pre-processing a polymer blend into a polymer alloy by KinetiSol enables increased ivacaftor amorphous solid dispersion drug loading and dissolution. Biomedicines. 2023;11(5):1281. https://doi.org/10.3390/biomedicines11051281 CR - [25] Li J, Wang Y, Yu D. Effects of additives on the physical stability and dissolution of polymeric amorphous solid dispersions: a Review. AAPS PharmSciTech. 2023;24(7):175. https://doi.org/10.1208/s12249-023-02622-8 CR - [26] Kourounakis AP, Xanthopoulos D, Tzara A. Morpholine as a privileged structure: A review on the medicinal chemistry and pharmacological activity of morpholine containing bioactive molecules. Med Res Rev. 2020;40(2):709-752. https://doi.org/10.1002/med.21634 CR - [27] Mesallati H, Umerska A, Paluch KJ, Tajber L. Amorphous polymeric drug salts as ionic solid dispersion forms of ciprofloxacin. Mol Pharm. 2017;14(7):2209-2223. https://doi.org/10.1021/acs.molpharmaceut.7b00039 CR - [28] Crucitti VC, Migneco LM, Piozzi A, Taresco V, Garnett M, Argent RH, Francolini I. Intermolecular interaction and solid state characterization of abietic acid/chitosan solid dispersions possessing antimicrobial and antioxidant properties. Eur J Pharm Biopharm. 2018;125:114-123. https://doi.org/10.1016/j.ejpb.2018.01.012 CR - [29] Kumar N, Sarup P, Pahuja S. Formulation and characterization of dispersible tablets of cefpodoxime proxetil: A cephalosporin antibiotic. Res J Pharm Technol. 2021; 14(5):2806-2813. https://doi.org/10.52711/0974-360X.2021.00495 CR - [30] Mostafa GA, Al-Otaibi YH, Al-Badr AA. Cefpodoxime proxetil. Profiles Drug Subst Excip Relat Methodol. 2019;44:1-165. https://doi.org/10.1016/bs.podrm.2019.02.001 CR - [31] Patil P, Suryawanshi S, Patil S, Pawar A. HME-assisted formulation of taste-masked dispersible tablets of cefpodoxime proxetil and roxithromycin. J Taibah Univ Med Sci. 2023;19(2):252-262. https://doi.org/10.1016/j.jtumed.2023.12.004 CR - [32] Jindal A, Kumar A. Physical characterization of clove oil based self Nano-emulsifying formulations of cefpodoxime proxetil: Assessment of dissolution rate, antioxidant & antibacterial activity. OpenNano. 2022;8:100087. https://doi.org/10.1016/j.onano.2022.100087 CR - [33] Mujtaba A, Ali M, Kohli K. Statistical optimization and characterization of pH-independent extended-release drug delivery of cefpodoxime proxetil using Box–Behnken design. Chem Eng Res Des. 2014;92(1):156-165. http://dx.doi.org/10.1016/j.cherd.2013.05.032 CR - [34] Patil SH, Talele GS. Natural gum as mucoadhesive controlled release carriers: evaluation of cefpodoxime proxetil by D-Optimal design technique. Drug Deliv. 2014;21(2):118-129. https://doi.org/10.3109/10717544.2013.834416 CR - [35] Alipour A, Babaei Shekardasht M, Gharbani P, Mirzaei Shalmani M. Synthesis, characterization and application of MP@ p (EGDMA-co-HPMA) in adsorption and release of cefpodoxime. Int J Polym Mater Polym Biomater. 2023:73(9):1-10. http://dx.doi.org/10.1080/00914037.2023.2207138 CR - [36] Kakumanu VK, Arora V, Bansal AK. Investigation on physicochemical and biological differences of cefpodoxime proxetil enantiomers. Eur J Pharm Biopharm. 2006;64(2):255-259. https://doi.org/10.1016/j.ejpb.2006.05.001 CR - [37] Li J, Zhang D, Hu C. Characterization of impurities in cefpodoxime proxetil using LC–MSn. Acta Pharm Sin B. 2014;4(4):322-332. https://doi.org/10.1016%2Fj.apsb.2014.06.007 CR - [38] Nappinnai M, Sivaneswari S. Formulation optimization and characterization of gastroretentive cefpodoxime proxetil mucoadhesive microspheres using 32 factorial design. J Pharm Res. 2013;7(4):304-309. http://dx.doi.org/10.1016/j.jopr.2013.04.014 CR - [39] Kakumanu VK, Arora V, Bansal AK. Investigation of factors responsible for low oral bioavailability of cefpodoxime proxetil. Int J Pharm. 2006;317(2):155-160. https://doi.org/10.1016/j.ijpharm.2006.03.004 CR - [40] Fukutsu N, Kawasaki T, Saito K, Nakazawa H. Application of high-performance liquid chromatography hyphenated techniques for identification of degradation products of cefpodoxime proxetil. J Chromatogr A. 2006;1129(2):153-159. https://doi.org/10.1016/j.chroma.2006.06.102 CR - [41] Hamaura T, Kusai A, Nishimura K. Gel formation of cefpodoxime proxetil. STP Pharma Sci. 1995;5(4):324-331. CR - [42] Hamamura T, Ohtani T, Kusai A, Nishimura K. Unusual dissolution behavior of cefpodoxime proxetil: effect of pH and ionic factors. STP Pharm Sci. 1995;5:332-338. CR - [43] Chu J, Li G, Row KH, Kim H, Lee Y-W. Preparation of cefpodoxime proxetil fine particles using supercritical fluids. Int J Pharm. 2009;369(1-2):85-91. https://doi.org/10.1016/j.ijpharm.2008.10.029 CR - [44] Crauste-Manciet S, Huneau J, Decroix M, Tome D, Farinotti R, Chaumeil J. Cefpodoxime proxetil esterase activity in rabbit small intestine: a role in the partial cefpodoxime absorption. Int J Pharm. 1997;149(2):241-249. https://doi.org/10.1016/S0378-5173(97)04881-3 CR - [45] Heng W, Wei Y, Xue Y, Cheng H, Zhang L, Zhang J, Gao Y, Qian S. Gel formation induced slow dissolution of amorphous indomethacin. Pharm Res. 2019;36:1-14. https://doi.org/10.1007/s11095-019-2700-x CR - [46] Yurtdaş-Kırımlıoğlu G. Development and characterization of lyophilized cefpodoxime proxetil-Pluronic® F127/polyvinylpyrrolidone K30 solid dispersions with improved dissolution and enhanced antibacterial activity. Pharm Dev Technol. 2021;26(4):476-489. https://doi.org/10.1080/10837450.2021.1889584 CR - [47] Sharma N, Jain N, Sudhakar C, Jain S. Formulation and evaluation of gastro retentive floating tablets containing cefpodoxime proxetil solid dispersions. Int J Curr Pharm Res. 2012;4(4):82-87. CR - [48] Mujtaba A, Ali M, Kohli K. Formulation of extended release cefpodoxime proxetil chitosan–alginate beads using quality by design approach. Int J Biol Macromol. 2014;69:420-429. https://doi.org/10.1016/j.ijbiomac.2014.05.066 CR - [49] Patil PS, Suryawanshi SJ, Patil SS, Pawar AP. HME-assisted formulation of taste-masked dispersible tablets of cefpodoxime proxetil and roxithromycin. J Taibah Univ Med Sci. 2024;19(2):252-262. https://doi.org/10.1016%2Fj.jtumed.2023.12.004 CR - [50] Apiwongngam J, Limwikrant W, Jintapattanakit A, Jaturanpinyo M. Enhanced supersaturation of chlortetracycline hydrochloride by amorphous solid dispersion. J Drug Deliv Sci Technol. 2018;47:417-426. http://dx.doi.org/10.1016/j.jddst.2018.08.007 CR - [51] Shehab OR, AlRabiah H, Abdel-Aziz HA, Mostafa GA. Charge-transfer complexes of cefpodoxime proxetil with chloranilic acid and 2, 3-dichloro-5, 6-dicyano-1, 4-benzoquinone: Experimental and theoretical studies. J Mol Liq. 2018;257:42-51. http://dx.doi.org/10.1016/j.molliq.2018.02.083 CR - [52] Kader NA, Kamer AA, Elekhnawy E, Arafa M, Essa EA, El Maghraby GM. Melt granulation for enhanced dissolution rate and antimicrobial activity of cefpodoxime proxetil. Res J Pharm Technol. 2023;16(8):3921-3928. http://dx.doi.org/10.52711/0974-360X.2023.00645 CR - [53] Duraivel S, Venkateswarlu V, Kumar AP, Gopinath H. Enhancement of dissolution rate of cefpodoxime proxetil by using solid dispersion and cogrinding approaches. Res J Pharm Technol. 2012;5(12):1552-1562. CR - [54] Fan Y, Chen H, Huang Z, Zhu J, Wan F, Peng T, Pan X, Huang Y, Wu C. Taste-masking and colloidal-stable cubosomes loaded with Cefpodoxime proxetil for pediatric oral delivery. Int J Pharm. 2020;575:118875. https://doi.org/10.1016/j.ijpharm.2019.118875 CR - [55] Gupta MK, Vanwert A, Bogner RH. Formation of physically stable amorphous drugs by milling with Neusilin. J Pharm Sci. 2003;92(3):536-551. https://doi.org/10.1002/jps.10308 CR - [56] Ivanisevic I. Physical stability studies of miscible amorphous solid dispersions. J Pharm Sci. 2010;99(9):4005-4012. https://doi.org/10.1002/jps.22247 CR - [57] Sahoo A, Kumar NK, Suryanarayanan R. Crosslinking: An avenue to develop stable amorphous solid dispersion with high drug loading and tailored physical stability. J Control Release. 2019;311:212-224. https://doi.org/10.1016/j.jconrel.2019.09.007 CR - [58] Kaur S, Jena SK, Samal SK, Saini V, Sangamwar AT. Freeze dried solid dispersion of exemestane: A way to negate an aqueous solubility and oral bioavailability problems. Eur J Pharm Sci. 2017;107:54-61. https://doi.org/10.1016/j.ejps.2017.06.032 CR - [59] Mujtaba A, Kohli K. In vitro/in vivo evaluation of HPMC/alginate based extended-release matrix tablets of cefpodoxime proxetil. Int J Biol Macromol. 2016;89:434-441. https://doi.org/10.1016/j.ijbiomac.2016.05.010 CR - [60] Luebbert C, Sadowski G. Moisture-induced phase separation and recrystallization in amorphous solid dispersions. Int J Pharm. 2017;532(1):635-646. https://doi.org/10.1016/j.ijpharm.2017.08.121 CR - [61] Moseson DE, Parker AS, Beaudoin SP, Taylor LS. Amorphous solid dispersions containing residual crystallinity: Influence of seed properties and polymer adsorption on dissolution performance. Eur J Pharm Sci. 2020;146:105276. https://doi.org/10.1016/j.ejps.2020.105276 CR - [62] Newman A, Knipp G, Zografi G. Assessing the performance of amorphous solid dispersions. J Pharm Sci. 2012;101(4):1355-1377. https://doi.org/10.1002/jps.23031 CR - [63] Aldafaay AAA, Abdulamir HA, Abdulhussain HA, Badry AS, Abdulsada AK. The use of Urinary α-amylase level in a diagnosis of chronic renal failure. Res J Pharm Technol. 2021; 14(3):1597-1600. http://dx.doi.org/10.5958/0974-360X.2021.00283.3 CR - [64] Al-Shammari AH, Abbood ZA, Lateef HF. Assessing the impacts of L-carnitine and modafinil on fatigue in Iraqi multiple sclerosis patients. J Adv Pharm Technol Res. 2023;14(3):226-228. https://doi.org/10.4103%2FJAPTR.JAPTR_225_23 UR - https://doi.org/10.12991/jrespharm.1734450 L1 - https://dergipark.org.tr/en/download/article-file/5021414 ER -