TY - JOUR T1 - Enhancing the yield of emodin from Cassia alata L. leaves using ultrasound-assisted deep eutectic solvent extraction AU - Mun`im, Abdul AU - Tirtanirmala, Prisnu AU - Firdayani, Firdayani PY - 2025 DA - July Y2 - 2024 DO - 10.12991/jrespharm.1734670 JF - Journal of Research in Pharmacy JO - J. Res. Pharm. PB - Marmara University WT - DergiPark SN - 2630-6344 SP - 1551 EP - 1561 VL - 29 IS - 4 LA - en AB - Emodin is a bioactive compound found in Cassia alata leaves, which has several pharmacological effects.However, the current extraction methods for these leaves produce a low yield of emodin. Deep eutectic solvent (DES),with their numerous advantages, could be a strategy to increase the yield of emodin during the extraction process. Theobjective of this research was to enhance the yield of emodin from the extraction of Cassia alata leaves using DES. Afterevaluating various DES combinations, the selected DES was found to be lactic acid:choline chloride (2:1). To determineoptimal extraction conditions, response surface methodology with Box Behnken Design was employed. The resultsindicate that the highest total anthraquinone content was obtained at extraction temperature of 53°C, extraction time of19 minutes, and a solid-to-solvent ratio of 1:20 g/mL. Additionally, partial method validation was conducted for thequantification of emodin in Cassia alata leaves using LC-UV instrumentation. The validated method employed thefollowing conditions: isocratic mobile phase of 2% acetic acid:methanol (30:70), flow rate of 0.8 mL/min, wavelength of288 nm, and C-18 column (150 mm x 4.6 mm, 5 µm). The emodin and total anthraquinone content in the Cassia alata leafextract using the selected DES were higher compared to ethanol extract using the same extraction method. In conclusion,the DES solvent (lactic acid:choline chloride in molar ratio 2:1) can be utilized as an alternative solvent in the extractionof Cassia alata leaves, which is more effective and efficient in enhancing emodin yield compared to conventional ethanolsolvents. KW - Senna alata KW - anthraquinone KW - response surface methodology KW - HPLC KW - green extraction CR - Adriadi A, Asra R, Solikah S. Studi Etnobotani Tumbuhan Obat Masyarakat Kelurahan Kembang Paseban Kecamatan Mersam Kabupaten Batanghari. Jurnal Belantara. 2022; 5(2). https://doi.org/10.29303/jbl.v5i2.881 CR - Widodo H, Rohman A, Sismindari S. Pemanfaatan Tumbuhan Famili Fabaceae untuk Pengobatan Penyakit Liver oleh Pengobat Tradisional Berbagai Etnis di Indonesia. Media Penelitian dan Pengembangan Kesehatan. 2019; 29(1): 65–88. https://doi.org/10.22435/mpk.v29i1.538 CR - Dave H, Ledwani L. A review on anthraquinones isolated from Cassia species and their applications. Indian J Nat Prod Resour. 2012; 3(3): 291–319. CR - Sakunpak A, Sirikatitham A, Panichayupakaranant P. Preparation of anthraquinone high-yielding Senna alata extract and its stability. Pharm Biol. 2009; 47(3): 236–241. https://doi.org/10.1080/13880200802434757 CR - Chatsiriwej N, Wungsintaweekul J, Panichayupakaranant P. Anthraquinone production in Senna alata. root cultures. Pharm Biol. 2006; 44(6): 416–420. https://doi.org/10.1080/13880200600794154 CR - Dey D, Ray R, Hazra B. Antitubercular and antibacterial activity of quinonoid natural products against multi-drug resistant clinical isolates. Phytother Res. 2014; 28(7): 1014–1021. https://doi.org/10.1002/PTR.5090 CR - Huang P H, Huang CY, Chen MC, Lee YT, Yue CH, Wang HY, Lin Ho. Emodin and aloe-emodin suppress breast cancer cell proliferation through erα ınhibition. Evid Based Complement Alternat Med. 2013;2013:376123. https://doi.org/10.1155/2013/376123 CR - Ni Q, Sun K, Chen G, Shang D. In vitro effects of emodin on peritoneal macrophages that express membrane-bound CD14 protein in a rat model of severe acute pancreatitis/systemic inflammatory response syndrome. Mol Med Rep. 2014; 9(1): 355–359. https://doi.org/10.3892/MMR.2013.1771 CR - Qian ZJ, Zhang C, Li YX, Je JY, Kim SK, Jung WK. Protective effects of emodin and chrysophanol ısolated from marine fungus Aspergillus sp. on ethanol-ınduced toxicity in HepG2/CYP2E1 Cells. Evid Based Complement Alternat Med. 2011;2011:452621. https://doi.org/10.1155/2011/452621 CR - Schwarz S, Wang K, Yu W, Sun B, Schwarz W. Emodin inhibits current through SARS-associated coronavirus 3a protein. Antiviral Res. 2011; 90(1): 64. https://doi.org/10.1016/J.ANTIVIRAL.2011.02.008 CR - Yang T, Kong B, Kuang Y, Cheng L, Gu J, Zhang J, Shu H, Yu S, Yang X, Cheng J, Huang H. Emodin plays an interventional role in epileptic rats via multidrug resistance gene 1 (MDR1). Int J Clin Exp Pathol. 2015; 8(3): 3418. CR - Yang Y, Shang W, Zhou L, Jiang B, Jin H, Chen M. Emodin with PPARgamma ligand-binding activity promotes adipocyte differentiation and increases glucose uptake in 3T3-Ll cells. Biochem Biophys Res Commun. 2007; 353(2): 225–230. https://doi.org/10.1016/J.BBRC.2006.11.134 CR - Duval J, Pecher V, Poujol M, Lesellier E. Research advances for the extraction, analysis and uses of anthraquinones: A review. Ind Crops Prod. 2016; 94: 812–833. https://doi.org/10.1016/j.indcrop.2016.09.056 CR - Fatmawati S, Setyo Purnomo A, Fadzelly Abu Bakar M, Pagoh T, Panchor J. Chemical constituents, usage and pharmacological activity of Cassia alata. Heliyon. 2020 ;6(7):e04396. https://doi.org/10.1016/j.heliyon.2020.e04396 CR - Arvindekar AU, Pereira GR, Laddha KS. Assessment of conventional and novel extraction techniques on extraction efficiency of five anthraquinones from Rheum emodi. J Food Sci Technol. 2015;52(10):6574-6582. https://doi.org/10.1007/s13197-015-1814-3 CR - Dai Y, van Spronsen J, Witkamp GJ, Verpoorte R, Choi YH. Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta. 2013; 766: 61–68. https://doi.org/10.1016/J.ACA.2012.12.019 CR - Promila, Singh S. Applications of green solvents in extraction of phytochemicals from medicinal plants: A review. The Pharma Innov J. 2018; 7(3): 238–245. CR - Wu YC, Wu P, Li YB, Liu TC, Zhang L, Zhou YH. Natural deep eutectic solvents as new green solvents to extract anthraquinones from Rheum palmatum L. RSC Adv. 2018; 8(27): 15069–15077. https://doi.org/10.1039/C7RA13581E CR - Breig SJM, Luti KJK. Response surface methodology: A review on its applications and challenges in microbial cultures. Mater Today: Proceed. 2021; 42:2277-2284. https://doi.org/10.1016/j.matpr.2020.12.316 CR - Cano-Lamadrid M, Martínez-Zamora L, Mozafari L, Bueso MC, Kessler M, Artés-Hernández F. response surface methodology to optimize the extraction of carotenoids from horticultural by-products—A systematic review. Foods. 2023; 12(24):4456. https://doi.org/10.3390/foods12244456 CR - Fukuda IM, Pinto CFF, Moreira CS, Saviano AM, Lourenço FR. Design of experiments (DoE) applied to pharmaceutical and analytical quality by design (QbD). Brazil J Pharm Sci. 2018; 54(Special):e01006. https://doi.org/10.1590/s2175-97902018000001006 CR - Xu Y, Wan Y, Liu F, Chen J, Tan T, Guo L. Simultaneous determination of seven anthraquinones in Cassiae semen by natural deep eutectic solvent extraction. Phytochem Anal. 2022; 33(8): 1246–1256. https://doi.org/10.1002/pca.3176 CR - Chisha G, Li C, Xiao L, Wang B, Chen Y, Cui Z. Multiscale mechanism exploration and experimental optimization for rosmarinic acid extraction from Rosmarinus officinalis using natural deep eutectic solvents. Ind Crops Prod. 2022; 188: 115637. https://doi.org/10.1016/J.INDCROP.2022.115637 CR - Zhang QW, Lin LG, Ye WC. Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Med (United Kingdom). 2018; 13(1): 1–26. https://doi.org/10.1186/S13020-018-0177-X/FIGURES/13 CR - Söğütlü İ, Saeed SM, Adil M, Yadav A, Abdulkareem Mahmood E, Saadh MJ. Extraction of some essential amino acids using aqueous two-phase systems made by sugar-based deep eutectic solvents. RSC Adv. 2023; 13(29): 19674– 19681. https://doi.org/10.1039/D3RA03092J CR - Panichayupakaranant P, Sakunpak A, Sakunphueak A. Quantitative HPLC determination and extraction. J Chromatogr Sci. 2009;47(3):197-200. https://doi.org/10.1093/chromsci/47.3.197. CR - Qian G, Leung SY, Lu G,Leung KSY. Differentiation of rhizoma et radix Polygoni cuspidati from closely related herbs by HPLC fingerprinting. Chem Pharm Bull (Tokyo). 2006; 54(8): 1179–1186. https://doi.org/10.1248/cpb.54.1179. CR - Aung WW, Panich K, Watthanophas S, Naridsirikul S, Ponphaiboon J, Krongrawa W, Kulpicheswanich P, Limmatvapirat S, Limmatvapirat C. Preparation of bioactive de-chlorophyll rhein-rich Senna alata extract. Antibiotics (Basel). 2023;12(1):181. https://doi.org/10.3390/antibiotics12010181. CR - Wilson RE, Groskreutz SR, Weber SG. Improving the sensitivity, resolution, and peak capacity of gradient elution in capillary liquid chromatography with large-volume ınjections by using temperature-assisted on-column solute focusing. Anal Chem. 2016; 88(10): 5112–5121. https://doi.org/10.1021/ACS.ANALCHEM.5B04793/SUPPL_FILE/AC5B04793_SI_001.PDF CR - Molnar M, Gašo-Sokač D, Komar M, Jakovljević Kovač M, Bušić V. Potential of deep eutectic solvents in the extraction of organic compounds from food ındustry by-products and agro-ındustrial waste. Separations 2024; 11(1): 35. https://doi.org/10.3390/SEPARATIONS11010035 CR - Jauregi P, Esnal-Yeregi L, Labidi J. Natural deep eutectic solvents (NADES) for the extraction of bioactives: emerging opportunities in biorefinery applications. Peer J Anal Chem. 2024; 6:e32. https://doi.org/10.7717/peerj-achem.32 CR - Hong Z, Guigan F, Hua Z, Kun L. Determination of anthraquinone content in lac dye through combined spectrophotometry and HPCE. Procedia Eng. 2011; 18: 86–94. https://doi.org/10.1016/j.proeng.2011.11.014 CR - Sakulpanich A, Gritsanapan W. Extraction method for high content of anthraquinones from Cassia fistula pods. J Health Res. 2008; 22(4): 167–172. UR - https://doi.org/10.12991/jrespharm.1734670 L1 - https://dergipark.org.tr/en/download/article-file/5022286 ER -