TY - JOUR T1 - Development of Tc-99m radiolabeling PLGA parameters nanoparticles: Preparation, characterization and evaluation of radiolabeling parameters AU - Sarcan, Elif Tugce AU - Battal, Hümeyra AU - Silindir-günay, Mine AU - Erdoğan, Suna PY - 2025 DA - July Y2 - 2024 DO - 10.12991/jrespharm.1734690 JF - Journal of Research in Pharmacy JO - J. Res. Pharm. PB - Marmara University WT - DergiPark SN - 2630-6344 SP - 1753 EP - 1759 VL - 29 IS - 4 LA - en AB - Radiolabeled polymeric NPs are widely used drug delivery systems in cancer therapy and imaging due to their easy and rapid formation. These systems provide several advantages for imaging and therapy of many diseases and cancers, such as increased sensitivity, better image quality, etc. In this study, Tc-99m radiolabeled PLGA nanoparticles were prepared in different conditions and these conditions were investigated. The amount of reducing agent, incubation temperature and time, and pH were investigated to obtain the 99mTc-PLGA nanoparticles with higher RCP (%). NPs were formed well with the nanoprecipitation method between 180-200 nm. Then, the optimum formulation was obtained with 50 µl SnCl2 at pH 7 and 25 ºC conditions for 30 minutes of incubation time. This formulation was found stable at 25 ºC for 12 hours while showing 3 hours of stability at 37 ºC. The data proved that PLGA NPs can be radiolabeled with Tc-99m at high efficiency and showed relatively high radiolabeling stability. KW - Technetium-99m KW - PLGA nanoparticles KW - radiolabelling KW - radiopharmaceuticals CR - [1] Varani M, Campagna G, Bentivoglio V, Serafinelli M, Martini ML, Galli F, Signore A. Synthesis and biodistribution of 99mTc-Labeled PLGA nanoparticles by microfluidic technique. Pharmaceutics. 2021;13(11):1769. https://doi.org/10.3390/pharmaceutics13111769 CR - [2] Chiu HI, Samad NA, Fang L, Lim V. Cytotoxicity of targeted PLGA nanoparticles: A systematic review. RSC Adv. 2021; 11(16): 9433. https://doi.org/10.1039/D1RA00074H CR - [3] Schoubben A, Ricci M, Giovagnoli S. Meeting the unmet: From traditional to cutting-edge techniques for poly lactide and poly lactide-co-glycolide microparticle manufacturing. J Pharm Investig. 2019; 49: 381-404. https://doi.org/10.1007/s40005-019-00446-y CR - [4] Prabhu R, Patravale V, Joshi MD. Polymeric nanoparticles for targeted treatment in oncology: Current insights. Int J Nanomed. 2015; 10: 1001-1018. https://doi.org/10.2147/IJN.S56932 CR - [5] Zhang X, Yan R, Wei Z, Yang D, Hu Z, Zhang Y, Huang X, Huang H, Wang W. Folate decorated multifunctional biodegradable nanoparticles for gastric carcinoma active targeting theranostics. Int J Nanomed. 2022; 12: 2493-2502. https://doi.org/10.2147/IJN.S348380 [6] Hong H, Zhang Y, Sun J, Cai W. Molecular imaging and therapy of cancer with radiolabelled nanoparticles. Nano Today. 2009; 4(5): 399-413. https://doi.org/10.1016/j.nantod.2009.07.001 CR - [7] Loudos G, Kagadis GC, Psimadas D. Current status and future perspectives of in vivo small animal imaging using radiolabelled nanoparticles. Eur J Radiol. 2011; 78(2): 287-295. https://doi.org/10.1016/j.ejrad.2010.06.025 CR - [8] Chakravarty R, Goel S, Dash A, Cai W. Radiolabeled inorganic nanoparticles for positron emission tomography imaging of cancer: an overview. Q J Nucl Med Mol Imaging. 2017; 61(2): 181-204. https://doi.org/10.23736/S1824 4785.17.02969-7 CR - [9] after Snehalatha M, Venugopal K, Saha RN. Etoposide loaded PLGA and PCL nanoparticles II: Biodistribution and pharmacokinetics radiolabelling 99mTc-labeled with Tc-99m. Drug Deliv. 2008; 15(5): 277-287. https://doi.org/10.1080/10717540802006500 CR - [10] Arulsudar N, Subramanian N, Mishra P, Sharma RK, Murthy RS. Preparation, characterization and biodistribution of liposome encapsulated cyclosporine. J Drug Target. 2003; 11(3): 187-196. https://doi.org/10.1080/10611860310001615415 CR - [11] Oda CMR, Fernandes RS, de Araujo Lopes SC, de Oliveria MC, Cardoso VN, Santos DM, de Castro Pimenta AM, Malachias A, Paniago R, Townsdend DM, Colletti PM, Rubello Di Alves RJ, de Barros ALB, Leite EA. Synthesis, characterization and radiolabelling of polymeric nano-micelles as a platform for tumor delivering. Biomed Pharmacother. 2017; 89: 268-275. https://doi.org/10.1016/j.biopha.2017.01.144 CR - [12] He Z, Zhang X, Huang J, Wu Y, Huang X, Chen J, Xia J, Jiang, H, Ma J, Wu J. Immune activity and biodistribution of polypeptide K237 and folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles radiolabeled with Tc-99m. Oncotarget. 2016; 7(47): 76635-76646. https://doi.org/10.18632/oncotarget.12850 CR - [13] Sarcan ET, Silindir Gunay M, Ozer AY. Theranostic polymeric nanoparticles for NIR imaging and photodynamic therapy. Int J Pharm. 2018; 551(1-2): 329-338. https://doi.org/10.1016/j.ijpharm.2018.09.019 CR - [14] Halder KK, Mandal B, Debneth MC, Bera H, Ghosh LK, Gupta BK. Chloramphenicol-incorporated poly lactide-co glycolide (PLGA) nanoparticles: Formulation, characterization, technetium-99m labeling and biodistribution studies. J Drug Target. 2008; 16(4): 311-320. https://doi.org/10.1080/10611860801899300 CR - [15] Baishya R, Nayak DK, Kumar D, Sinha S, Gupta A, Ganguly S, Debnath MC. Ursolic acid loaded PLGA nanoparticles: In vitro and in vivo evaluation to explore tumor targeting ability on B16F10 melanoma cell lines. Pharm Res. 2016; 33(11): 2691-2703. https://doi.org/10.1007/s11095-016-1994-1 CR - [16] Fessi H, Puisieux F, Devissaguet JPH, Ammoury N, Benita S. Nanocapsule formation by interfacial polimer deposition following solvent displacement. Int J Pharm. 1989; 55(1): R1-R4. https://doi.org/10.1016/0378 5173(89)90281-0 CR - [17] Varani M, Bentivoglio V, Lauri C, Ranieri D, Signore A. Methods for Radiolabelling Nanoparticles: SPECT Use (Part 1). Biomolecules. 2022; 12(10): 1522. https://doi.org/10.3390/biom12101522 CR - [18] Saha GB. Quality control of radiopharmaceuticals. In: Saha GB (Ed). Fundamentals of Nuclear Pharmacy. Springer, 2018, pp. 163-183. UR - https://doi.org/10.12991/jrespharm.1734690 L1 - https://dergipark.org.tr/en/download/article-file/5022358 ER -