TY - JOUR T1 - Determination of the antimicrobial and antibiofilm activity of lyophilized cornelian cherry (Cornus mas L.) AU - Rayaman, Erkan AU - Çelik, Zehra Margot AU - Kurt, Kadriye AU - Albayrak, Miraç AU - Akpınar, Oktay AU - Emre, Gizem PY - 2025 DA - July Y2 - 2025 DO - 10.12991/jrespharm.1734691 JF - Journal of Research in Pharmacy JO - J. Res. Pharm. PB - Marmara University WT - DergiPark SN - 2630-6344 SP - 1542 EP - 1550 VL - 29 IS - 4 LA - en AB - This study investigates the antimicrobial and antibiofilm activities of lyophilized Cornelian cherry (Cornusmas L.) and its methanol extract against a range of clinically significant pathogens. The research aimed to evaluate thepotential of these natural compounds as alternative antimicrobial agents, given the global rise in antimicrobialresistance. Antibacterial activity was assessed using agar well diffusion and broth microdilution methods, whileantibiofilm efficacy was determined through biofilm inhibition assays. The methanol extract exhibited broad-spectrumantibacterial activity, effectively inhibiting all tested bacterial strains, whereas the lyophilized form demonstrated noactivity against Klebsiella pneumoniae and Escherichia coli. Both forms showed strong biofilm inhibition, particularlyagainst Staphylococcus aureus, Enterococcus faecalis, Streptococcus pyogenes, Pseudomonas aeruginosa, and Acinetobacterbaumannii, with inhibition increasing in a dose-dependent manner and peaking at the minimum inhibitoryconcentration. No antifungal activity was observed against the tested Candida species. The superior efficacy of themethanol extract may be attributed to a higher concentration of phenolic and anthocyanin compounds. These findingssuggest that Cornelian cherry, particularly in its methanol-extracted form, holds promise as a natural antimicrobial andantibiofilm agent. Further research is warranted to explore its potential applications in clinical and industrial settings. KW - Cornelian cherry KW - Cormus mas L. KW - antimicrobial effect KW - antibiofilm effect CR - Kazimierski M, Reguła J, Molska M. Cornelian cherry (Cornus mas L.)– characteristics, nutritional and pro-health properties. Acta Sci Pol Technol Aliment. 2019; 18(1): 5-12. https://doi.org/10.17306/J.AFS.2019.0628 CR - Kucharska AZ, Szumny A, Sokół-Łętowska A, Piórecki N, Klymenko SV. Iridoids and anthocyanins in cornelian cherry (Cornus mas L.) cultivars. J Food Compos Anal. 2015; 40: 95-102. https://doi.org/10.1016/j.jfca.2014.12.016 CR - Dinda B, Kyriakopoulos AM, Dinda S, Zoumpourlis V, Thomaidis NS, Velegraki A, Markopoulos C, Dinda M. Cornus mas L. (cornelian cherry), an important European and Asian traditional food and medicine: ethnomedicine, phytochemistry and pharmacology for its commercial utilization in drug industry. J Ethnopharmacol. 2016; 193: 670- 690. https://doi.org/10.1016/j.jep.2016.09.042 CR - Ercisli S. A short review of the fruit germplasm resources of Turkey. Genet Resour Crop Evol. 2004; 51(4): 419-435. https://doi.org/10.1023/B:GRES.0000023458.60138.79 CR - Bayram HM, Ozturkcan SA. Bioactive components and biological properties of cornelian cherry (Cornus mas L.): A comprehensive review. J Funct Foods. 2020; 75: 104252. https://doi.org/10.1016/j.jff.2020.10425 CR - Hosseinpour-Jaghdani F, Shomali T, Gholipour-Shahraki S, Rahimi-Madiseh M, Rafieian-Kopaei M. Cornus mas: a review on traditional uses and pharmacological properties. J Complement Integr Med. 2017;14(3):/j/jcim.2017.14.issue-3/jcim-2016-0137/jcim-2016-0137.xml. https://doi.org/10.1515/jcim-2016-0137 CR - Jayaprakasam B, Olson LK, Schutzki RE, Tai MH, Nair MG. Amelioration of obesity and glucose intolerance in high- fat-fed C57BL/6 mice by anthocyanins and ursolic acid in cornelian cherry (Cornus mas). J Agric Food Chem. 2006; 54(1): 243–248. https://doi.org/10.1021/jf052 0342 CR - Pawlowska AM, Camangi F, Braca A. Quali-quantitative analysis of flavonoids of Cornus mas L.(Cornaceae) fruits. Food Chem. 2010; 119(3): 1257-1261. https://doi.org/10.1016/j.foodchem.2009.07.063 CR - Asgary S, Kelishadi R, Rafieian-Kopaei M, Najafi S, Najafi M, Sahebkar A. Investigation of the lipid-modifying and antiinflammatory effects of Cornus mas L. supplementation on dyslipidemic children and adolescents. Pediatr Cardiol. 2013; 34(7): 1729-1735. https://doi.org/10.1007/s00246-013-0693-5 CR - Asgary S, Rafieian-Kopaei M, Shamsi F, Najafi S, Sahebkar A. Biochemical and histopathological study of the anti- hyperglycemic and anti-hyperlipidemic effects of cornelian cherry (Cornus mas L.) in alloxan-induced diabetic rats. J Complement Integr Med. 2014; 11(2): 63-69. https://doi.org/10.1515/jcim-2013-0022 CR - Celık ZM, Sargin M, Tamer HG, Gunes FE. The effect of lyophilized dried cornelian cherry (Cornus mas L.) intake on anthropometric and biochemical parameters in women with insulin resistance: A randomized controlled trial. Food Sci Nutr. 2023; 11(12): 8060-8071. https://doi.org/10.1002/fsn3.3725 CR - Beyaz S, Dalkılıç LK, Gök Ö, Aslan, A. Effect of black mulberry (Morus nigra L.) and cranberry (Cornus mas L.) on some molecular biological and biochemical parameters against oxidative damage caused by hydrogen peroxide in Saccharomyces cerevisiae. Bitlis Eren Univ J Sci. 2020; 9(3): 1134-1144. CR - Aurori M, Niculae M, Hanganu D, Pall E, Cenariu M, Vodnar DC, Bunea A, Fit N, Andrei, S. Phytochemical Profile, Antioxidant, Antimicrobial and Cytoprotective Effects of Cornelian Cherry (Cornus mas L.) Fruit Extracts. Pharmaceuticals. 2023; 16(3): 420. https://doi.org/10.3390/ph16030420 CR - Zagórska-Dziok M, Ziemlewska A, Mokrzyńska A, Nizioł-Łukaszewska Z, Sowa I, Szczepanek D, Wójciak M. Comparative study of cytotoxicity and antioxidant, anti-aging and antibacterial properties of unfermented and fermented extract of Cornus mas L. Int J Mol Sci. 2023; 24(17): 13232. https://doi.org/10.3390/ijms241713232 CR - Morrison L, Zembower TR. Antimicrobial Resistance. Gastroint Endosc Clin N Am. 2020; 30(4): 619-635. https://doi.org/10.1016/j.giec.2020.06.004. CR - Mirzaei R, Mohammadzadeh R, Alikhani MY, Shokri Moghadam M, Karampoor S, Kazemi S, Barfipoursalar A, Yousefimashouf R. The biofilm-associated bacterial infections unrelated to indwelling devices. IUBMB Life. 2020; 72(7)1271-1285. https://doi.org/10.1002/iub.2266. CR - Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem. 2015; 7(4): 493-512. https://doi.org/10.4155/fmc.15.6. CR - Ramalingam K, Amaechi BT. Antimicrobial effect of herbal extract of Acacia arabica with triphala on the biofilm forming cariogenic microorganisms. J Ayurveda Integr Med. 2020; 11(3): 322-328. https://doi.org/10.1016/j.jaim.2018.01.005. CR - Eldin AB, Ezzat M, Afifi M, Sabry O, Caprioli G. Herbal medicine: the magic way crouching microbial resistance. Nat Prod Res. 2023; 37(24): 4280-4289. https://doi.org/10.1080/14786419.2023.2172009. CR - Kokoska L, Kloucek P, Leuner O, Novy P. Plant-derived products as antibacterial and antifungal agents in human health care. Curr Med Chem. 2019; 26(29): 5501-5541. https://doi.org/10.2174/0929867325666180831144344. CR - Bayram HM, Iliaz R, Gunes FE. Effects of Cornus mas L. on anthropometric and biochemical parameters among metabolic associated fatty liver disease patients: Randomized clinical trial. J Ethnopharmacol. 2024; 318: 117068. https://doi.org/10.1016/j.jep.2023.117068 CR - WHO, 2024. Bacterial Priority Pathogens List, 2024: bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. World Health Organization. Geneva. CR - Rather MA, Gupta K, Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Brazil J Microbiol. 2021; 52(4): 1701–1718. https://doi.org/10.1007/s42770-021-00624-x CR - Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999; 284(5418): 1318-1322. https://doi.org/10.1126/science.284.5418.1318 CR - Silva E, Teixeira JA, Pereira MO, Rocha CMR, Sousa AM. Evolving biofilm inhibition and eradication in clinical settings through plant-based antibiofilm agents. Phytomedicine. 2023; 119: 154973. https://doi.org/10.1016/j.phymed.2023.154973 CR - Álvarez-Martínez FJ, Barrajón-Catalán E, Encinar JA, Rodríguez-Díaz JC, Mico, V. Antimicrobial Capacity of Plant Polyphenols against Gram-positive Bacteria: A Comprehensive Review. Curr Med Chem. 2020; 27(15): 2576–2606. https://doi.org/10.2174/0929867325666181008115650 CR - Çömlekcioğlu N, Dağlı F, Çömlekcioğlu U, Aygan A. Antioxidant capacity and some phytochemical properties of Cornus mas and Rosa canina fruits. Turk J Agric-Food Sci Technol. 2022; 10(9): 1724-1731. https://doi.org/10.24925/turjaf.v10i9.1724-1731.5434 CR - Yigit D. Antimicrobial and Antioxidant evaluation of fruit extract from Cornus mas L. Aksaray Univ J Sci Eng. 2018; 2(1): 41-51. https://doi.org/10.29002/asujse. 329856 CR - Krzyściak P, Krośniak M, Gąstoł M, Ochońska D, Krzyściak W. Antimicrobial activity of Cornelian cherry (Cornus mas L.). Postępy Fitoterapii. 2011; 4: 227-231. CR - Krisch J. Effect of fruit juices and pomace extracts on the growth of Gram-positive and Gram-negative bacteria. Acta Biol Szeged. 2008; 52(2): 267-270. CR - Turker AU, Yildirim AB, Karakas FP. Antibacterial and antitumor activities of some wild fruits grown in Turkey. Biotechnol Biotechnol Equip. 2012; 26(1): 2765–2772. https://doi.org/10.5504/BBEQ.2011.0156 CR - Milenković-Andjelković AS, Andjelković MZ, Radovanović AN, Radovanović BC, Nikolić, V. Phenol composition, DPPH radical scavenging and antimicrobial activity of Cornelian cherry (Cornus mas) fruit and leaf extracts. Chem Ind. Hemijska Industrija. 2015; 69(4): 331-337. https://doi.org/10.2298/HEMIND140216046M CR - Dosler S, Karaaslan E. Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Peptides. 2014; 62: 32-37. https://doi.org/10.1016/j.peptides.2014.09.021. CR - Nostro A, Roccaro AS, Bisignano G, Marino A, Cannatelli MA, Pizzimenti FC, Cioni PL, Procopio F, Blanco AR. Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med Microbiol. 2007; 56(4):519-523. https://doi.org/10.1099/jmm.0.46804-0 CR - Di Cagno R, Filannino P, Cantatore V, Polo A, Celano G, Martinovic A, Cavoski I, Gobbetti M. Design of potential probiotic yeast starters tailored for making a cornelian cherry (Cornus mas L.) functional beverage. Int J Food Microbiol. 2020; 323: 108591. https://doi.org/10.1016/j.ijfoodmicro.2020.108591 CR - Kyriakopoulos AM, Dinda B. Cornus mas (Linnaeus) novel devised medicinal preparations: Bactericidal effect against Staphylococcus aureus and Pseudomonas aeruginosa. Molecules. 2015; 20(6): 11202–11218. https://doi.org/10.3390/molecules200611202 CR - Bayan Y, Yılar M, Onaran A. Evaluation of antifungal activity of methanol plant extracts from Cornus mas L. and Morus alba L. Sixth International Scientific Agricultural Symposium “Agrosym 2015”. 2015; 640-643. https://doi.org/10.7251/AGSY1505640B CR - Cioch M, Satora P, Skotniczy M, Semik-Szczurak D, Tarko T. Characterisation of antimicrobial properties of extracts of selected medicinal plants. Polish J Microbiol. 2017; 66(4): 463. CR - Giusti MM, Wrolstad RE. Characterization and measurement of anthocyanins by UV‐visible spectroscopy. Curr Protocol Food Anal Chem. 2001; (1): F1-2. https://doi.org/10.1002/0471142913.faf0102s00 CR - Fuleki T, Francis FJ. Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries. J Food Sci. 1986; 33(1): 72-77. https://doi.org/10.1111/j.1365-2621.1968.tb00887.x CR - EUCAST, Antimicrobial susceptibility testing EUCAST disk diffusion method. Version 12, 2024. Perez C, Pauli M, Bazerque P. An Antibiotic Assay by the Agar-Well Diffusion Method. Acta Biol Med Exp. 1990; 15: 113-115. CR - ISO. ISO 20776–1: Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility devices. Part 1: Broth micro-dilution reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases. International Organization for Standardization, Geneva, Switzerland. 2019. UR - https://doi.org/10.12991/jrespharm.1734691 L1 - https://dergipark.org.tr/en/download/article-file/5022362 ER -