TY - JOUR T1 - Tribological Examination of Surface-Modified Copper Sulfide Nanoparticles TT - Yüzey Modifiye Edilmiş Bakır Sülfür Nanopartiküllerinin Tribolojik Davranışlarının İncelemesi AU - Uğur, Alper PY - 2025 DA - October Y2 - 2025 DO - 10.29130/dubited.1735151 JF - Duzce University Journal of Science and Technology JO - DÜBİTED PB - Duzce University WT - DergiPark SN - 2148-2446 SP - 1719 EP - 1731 VL - 13 IS - 4 LA - en AB - Today, advancements in technology across various fields are enhancing the quality, durability, and performance of machine components used in both machinery and vehicles. This evolution necessitates that parts in contact for extended periods can withstand high pressures and temperatures. Lubrication is one of the solutions. Thus, the demand for nano-lubricant additives is rising to improve the performance of lubricants and oils. In this study, bare CuS and Tween 80 (TW)-capped CuS nanoparticles (NPs) were synthesized as sulfur-containing lubricant additives using a solvothermal method. The particle sizes of both bare CuS and TW-capped CuS NPs were determined to be spherical, with sizes less than 15 nm. The addition of bare CuS NPs to 5W-30 base oil at a concentration of 0.05 (wt.%) reduced the wear rate by 50.2%, while TW-coated CuS NPs reduced the wear by 32.4%, compared to the base oil under high load level. KW - Copper Sulfide (CuS) KW - Extreme Pressure Nano Additives KW - Tween 80 KW - Anti-wear N2 - Günümüzde, çeşitli alanlardaki teknolojideki ilerlemeler, hem makinelerde hem de araçlarda kullanılan makine bileşenlerinin kalitesini, dayanıklılığını ve performansını artırmaktadır. Bu değişim süreci, uzun süre temas halinde olan parçaların yüksek basınçlara ve sıcaklıklar koşullarına dayanabilmesini gerektirmektedir. Çözümlerden biri olarak, yağlayıcı ve yağ performans arttırıcı nano yağlayıcı katkı maddelerinin kullanımına olan talep artmaktadır. Bu çalışmada, solvotermal bir yöntem kullanarak CuS ve Tween 80 (TW) kaplı CuS nanopartiküllerini (NP'ler) kükürt içeren yağlayıcı katkı maddeleri olarak sentezlenmiştir. Hem yüzeyi modifiye edilmemiş CuS hem de yüzeyi TW kaplı CuS NP'lerinin parçacık boyutlarının küresel olduğu ve boyutlarının 15 nm'den küçük olduğu belirlendi. Baz yağ ile karşılaştırıldığında, %0,05 (ağırlıkça) konsantrasyonda yüzeyi modifiye edilmemiş CuS NP'lerinin eklenmesi, test pimlerinin kütle kaybını en az %50,2 oranında azalttı. Ancak, TW kaplı CuS NP'ler kullanıldığında %32,4'e kadar bir aşınma azalması sağlanmıştır. CR - Abud Ali, Z. A. A., Takhakh, A. M., & Al-Waily, M. (2022). A review of use of nanoparticle additives in lubricants to improve its tribological properties. Materials Today: Proceedings, 52, 1442-1450. https://doi.org/10.1016/j.matpr.2021.11.193 CR - Adetunla, A., Afolalu, S., Jen, T.-C., & Ogundana, A. (2023, June). The roles of surfactant in tribology applications of recent technology: An overview. E3S Web Conferences, 391, Article 01021. https://doi.org/10.1051/e3sconf/202339101021 CR - Ain, N. U., Nasir, J. A., Khan, Z., Butler, I. S., & Rehman, Z. (2022). Copper sulfide nanostructures: Synthesis and biological applications. Rsc Advances, 12(12), 7550-7567. https://doi.org/10.1039/D1RA08414C CR - Chen, L., & Zhu, D. (2017). Preparation and tribological properties of unmodified and oleic acid-modified CuS nanorods as lubricating oil additives. Ceramics International, 43(5), 4246-4251. https://doi.org/10.1016/j.ceramint.2016.12.066 CR - Chimeno-Trinchet, C., Fernández-González, A., García Calzón, J. Á., Díaz-García, M. E., & Badía Laíño, R. (2019). Alkyl-capped copper oxide nanospheres and nanoprolates for sustainability: Water treatment and improved lubricating performance. Science and Technology of Advanced Materials, 20(1), 657-672. https://doi.org/10.1080/14686996.2019.1621683 CR - Gu, C. (2018). Modifying the lubricating and tribological properties via introducing the oleic acid in CuS nanomaterials for vehicle. Optics & Laser Technology, 108, 1-6. https://doi.org/10.1016/j.optlastec.2018.06.035 CR - Hua, K., Yu, H., Zuo, X., Zhou, F., & Zhang, X. (2024). CuS nanoparticles capped with MPEGOCS2K for applications as lubricants and antiwear additives. ACS Applied Nano Materials, 7(17), 20454-20463. https://doi.org/10.1021/acsanm.4c03457 CR - Hutchings, I., & Shipway, P. (2017). Tribology: Friction and wear of engineering materials (2nd ed.). Butterworth-Heinemann. CR - Ishikawa, S., Sato, T., Saitoh, K., Takuma, M., & Takahashi, Y. (2019). Fundamental study on functionality of synthetic sulfides: Evaluation of metal sulfides as solid lubricant. Jurnal Tribologi, 20, 26-38. CR - Jain, A. K., Kumar, M., & Thakre, G. D. (2021). Potential of CuS and CuO nanoparticles for friction reduction in piston ring–liner contact. Tribology: Materials, Surfaces & Interfaces, 15(4), 278-291. https://doi.org/10.1080/17515831.2020.1871244 CR - Jason, Y. J. J., How, H. G., Teoh, Y. H., & Chuah, H. G. (2020). A Study on the Tribological Performance of Nanolubricants. Processes, 8(11), 1-33. https://doi.org/10.3390/pr8111372 CR - Jiang, Z., Wang, Z., Qiao, C., Wang, Y., Zhang, S., Zhang, Y., Zhang, R., & Li, W. (2025). Friction reduction and antiwear mechanisms of cerium sulfide nanosheets under different sliding conditions. Langmuir, 41(4), 2492-2505. https://doi.org/10.1021/acs.langmuir.4c04231 CR - Kang, X., Wang, B., Zhu, L., & Zhu, H. (2008). Synthesis and tribological property study of oleic acid-modified copper sulfide nanoparticles. Wear, 265(1), 150-154. https://doi.org/10.1016/j.wear.2007.09.009 CR - Khan, Y., Durrani, S. K., Mehmood, M., Ahmad, J., Khan, M. R., & Firdous, S. (2010). Low temperature synthesis of fluorescent ZnO nanoparticles. Applied Surface Science, 257(5), 1756-1761. https://doi.org/10.1016/j.apsusc.2010.09.011 CR - Kovacı, H., Akaltun, Y., Yetim, A. F., Uzun, Y., & Çelik, A. (2018). Investigation of the usage possibility of CuO and CuS thin films produced by successive ionic layer adsorption and reaction (SILAR) as solid lubricant. Surface and Coatings Technology, 344, 522-527. https://doi.org/10.1016/j.surfcoat.2018.03.077 CR - Kumar, R., Torres, H., Aydinyan, S., Antonov, M., Varga, M., Hussainova, I., & Rodriguez Ripoll, M. (2023). Tribological behavior of Ni-based self-lubricating claddings containing sulfide of nickel, copper, or bismuth at temperatures up to 600 °C. Surface and Coatings Technology, 456, Article 129270. https://doi.org/10.1016/j.surfcoat.2023.129270 CR - Li, H., Zhang, Y., Li, C., Zhou, Z., Nie, X., Chen, Y., Cao, H., Liu, B., Zhang, N., Said, Z., Debnath, S., Jamil, M., Ali, H. M., & Sharma, S. (2022). Extreme pressure and antiwear additives for lubricant: Academic insights and perspectives. The International Journal of Advanced Manufacturing Technology, 120(1), 1-27. https://doi.org/10.1007/s00170-021-08614-x CR - Liu, C., Friedman, O., Li, Y., Li, S., Tian, Y., Golan, Y., & Meng, Y. (2019). Electric response of CuS nanoparticle lubricant additives: The effect of crystalline and amorphous octadecylamine surfactant capping layers. Langmuir, 35(48), 15825-15833. https://doi.org/10.1021/acs.langmuir.9b01714 CR - Liu, C., Friedman, O., Meng, Y., Tian, Y., & Golan, Y. (2018). CuS nanoparticle additives for enhanced ester lubricant performance. ACS Applied Nano Materials, 1(12), 7060-7065. https://doi.org/10.1021/acsanm.8b01632 CR - Liu, C., Yu, J., Lv, J., & Liu, S. (2025). The spherical WS2 nano lubricating additive designed to reduce the frictional fluctuations on the onset of friction. Materials Today Communications, 42(9), Article 111588. https://doi.org/10.1016/j.mtcomm.2025.111588 CR - Ludema, K. C. (1996). Friction, wear, lubrication: A textbook in tribology (1st ed.). CRC Press. https://doi.org/10.1201/9781439821893 CR - Ma, Y., Wan, H., Ye, Y., Chen, L., Li, H., Zhou, H., & Chen, J. (2020). In-situ synthesis of size-tunable silver sulfide nanoparticles to improve tribological properties of the polytetrafluoroethylene-based nanocomposite lubricating coatings. Tribology International, 148, Article 106324. https://doi.org/10.1016/j.triboint.2020.106324 CR - Minami, I. (2017). Molecular science of lubricant additives. Applied Sciences, 7(5), Article 445. https://doi.org/10.3390/app7050445 CR - Murshed, S. M. S., & Estellé, P. (2017). A state of the art review on viscosity of nanofluids. Renewable and Sustainable Energy Reviews, 76, 1134-1152. https://doi.org/10.1016/j.rser.2017.03.113 CR - Nagarajan, T., Sridewi, N., Abdullah, N., Walvekar, R., Shahabuddin, S., & Khalid, M. (2024). Investigating the age-dependent behavior of MoS2-hBN nanohybrid additives on the rheological properties of diesel engine oil. Journal of Molecular Liquids, 401, Article 124626. https://doi.org/10.1016/j.molliq.2024.124626 CR - Nyholm, N., & Espallargas, N. (2023). Functionalized carbon nanostructures as lubricant additives – A review. Carbon, 201, 1200-1228. https://doi.org/10.1016/j.carbon.2022.10.035 CR - Özakın, B., Gültekin, K., & Uğuz, G. (2025a). Investigation of the effect of particle size on dispersion stability and viscosity in kaolin particles-doped bio-based palm nanolubricants. Arabian Journal for Science and Engineering, 50(6), 4223-4241. https://doi.org/10.1007/s13369-024-09664-5 CR - Özakın, B., Gültekin, K., & Yurdgülü, H. İ. (2025b). Improvement of oxidation stability, hydrolytic stability and tribological properties of kaolin particles doped bio-based green palm oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 712, Article 136441. https://doi.org/10.1016/j.colsurfa.2025.136441 CR - Pakharukov, Y., Shabiev, F., Safargaliev, R., Mavrinskii, V., Vasiljev, S., Ezdin, B., Grigoriev, B., & Salihov, R. (2022). The mechanism of oil viscosity reduction with the addition of graphene nanoparticles. Journal of Molecular Liquids, 361(4), Article 119551. https://doi.org/10.1016/j.molliq.2022.119551 CR - Pawar, R. V., Hulwan, D. B., & Mandale, M. B. (2022). Recent advancements in synthesis, rheological characterization, and tribological performance of vegetable oil-based lubricants enhanced with nanoparticles for sustainable lubrication. Journal of Cleaner Production, 378, Article 134454. https://doi.org/10.1016/j.jclepro.2022.134454 CR - Perevyazko, I., Vollrath, A., Hornig, S., Pavlov, G. M., & Schubert, U. S. (2010). Characterization of poly(methyl methacrylate) nanoparticles prepared by nanoprecipitation using analytical ultracentrifugation, dynamic light scattering, and scanning electron microscopy. Journal of Polymer Science Part A: Polymer Chemistry, 48(18), 3924-3931. https://doi.org/10.1002/pola.24157 CR - Qin, J.-H., Liu, Z.-Q., Li, N., Chen, Y.-B., & Wang, D.-Y. (2017). A facile way to prepare CuS-oil nanofluids with enhanced thermal conductivity and appropriate viscosity. Journal of Nanoparticle Research, 19(2), Article 40. https://doi.org/10.1007/s11051-017-3743-8 CR - Rabkin, A., Friedman, O., & Golan, Y. (2015). Surface plasmon resonance in surfactant coated copper sulfide nanoparticles: Role of the structure of the capping agent. Journal of Colloid and Interface Science, 457, 43-51. https://doi.org/10.1016/j.jcis.2015.06.044 CR - Raina, A., Irfan Ul Haq, M., Anand, A., & Sudhanraj, J. (2021). Lubrication characteristics of oils containing nanoadditives: Influencing parameters, market scenario and advancements. Journal of The Institution of Engineers (India): Series D, 102(2), 575-587. https://doi.org/10.1007/s40033-021-00272-3 CR - Raj, S. I., Jaiswal, A., & Uddin, I. (2020). Ultrasmall aqueous starch-capped CuS quantum dots with tunable localized surface plasmon resonance and composition for the selective and sensitive detection of mercury(ii) ions. RSC Advances, 10(24), 14050-14059. https://doi.org/10.1039/C9RA09306K CR - Roy, P., & Srivastava, S. K. (2015). Nanostructured copper sulfides: Synthesis, properties and applications. CrystEngComm, 17(41), 7801-7815. https://doi.org/10.1039/C5CE01304F CR - Sentis, M. P. L., Feltin, N., Lambeng, N., Lemahieu, G., Brambilla, G., Meunier, G., & Chivas-Joly, C. (2024). Investigation of nanoparticle dispersibility and stability based on TiO2 analysis by SMLS, DLS, and SEM. Journal of Nanoparticle Research, 26(3), Article 55. https://doi.org/10.1007/s11051-024-05959-8 CR - Shahnazar, S., Bagheri, S., & Abd Hamid, S. B. (2016). Enhancing lubricant properties by nanoparticle additives. International Journal of Hydrogen Energy, 41(4), 3153-3170. https://doi.org/10.1016/j.ijhydene.2015.12.040 CR - Shamraiz, U., Hussain, R. A., & Badshah, A. (2016). Fabrication and applications of copper sulfide (CuS) nanostructures. Journal of Solid State Chemistry, 238, 25-40. https://doi.org/10.1016/j.jssc.2016.02.046 CR - Tang, Z., & Li, S. (2014). A review of recent developments of friction modifiers for liquid lubricants (2007–present). Current Opinion in Solid State and Materials Science, 18(3), 119-139. https://doi.org/10.1016/j.cossms.2014.02.002 CR - Thampi, A. D., Prasanth, M., Anandu, A., Sneha, E., Sasidharan, B., & Rani, S. (2021). The effect of nanoparticle additives on the tribological properties of various lubricating oils–review. Materials Today: Proceedings, 47(15), 4919-4924. https://doi.org/10.1016/j.matpr.2021.03.664 CR - Totten, G. E. (2006). Handbook of lubrication and tribology: Volume I—Application and maintenance (2nd ed.). CRC Press. CR - Uflyand, I. E., Zhinzhilo, V. A., & Burlakova, V. E. (2019). Metal-containing nanomaterials as lubricant additives: State-of-the-art and future development. Friction, 7(2), 93-116. https://doi.org/10.1007/s40544-019-0261-y CR - Uğur, A., & Avan, İ. (2023). Investigation of 1-octanethiol capped ZnS nanoparticles as lubricant additives and tribological behavior of oil-based nanolubricant. Wear, 530-531, Article 205029. https://doi.org/10.1016/j.wear.2023.205029 CR - Uğur, A., & Avan, İ. (2024). Anti-wear behavior of 1-octanethiol and tween-80 capped ZnO nanoparticles as lubricating oil additives. Surfaces and Interfaces, 46, Article 104018. https://doi.org/10.1016/j.surfin.2024.104018 CR - Wang, B., Qiu, F., Barber, G. C., Zou, Q., Wang, J., Guo, S., Yuan, Y., & Jiang, Q. (2022). Role of nano-sized materials as lubricant additives in friction and wear reduction: A review. Wear, 490-491(11), Article 204206. https://doi.org/10.1016/j.wear.2021.204206 CR - Wang, H., Xu, B., & Liu, J. (2012). Micron and nano ZnS solid lubrication film. In H. Wang, B. Xu, & J. Liu (Eds.), Micro and Nano Sulfide Solid Lubrication (pp. 291-303). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-23102-5 CR - Wang, J., Zhuang, W., Liang, W., Yan, T., Li, T., Zhang, L., & Li, S. (2022). Inorganic nanomaterial lubricant additives for base fluids, to improve tribological performance: Recent developments. Friction, 10(5), 645-676. https://doi.org/10.1007/s40544-021-0511-7 CR - Wang, S., Chen, D., Hong, Q., Gui, Y., Cao, Y., Ren, G., & Liang, Z. (2023). Surface functionalization of metal and metal oxide nanoparticles for dispersion and tribological applications – A review. Journal of Molecular Liquids, 389, Article 122821. https://doi.org/10.1016/j.molliq.2023.122821 CR - Wang, W., & Qu, J. (2025). Current and candidate additives for environmentally acceptable lubricants - a review. Friction, 13(4), Article 9440988. https://doi.org/10.26599/FRICT.2025.9440988 CR - Xi, Z., Wan, H., Ma, Y., Wu, Y., Chen, L., Li, H., Zhou, H., Chen, J., & Hou, G. (2021). In-situ synthesis of Cu2S nanoparticles to consolidate the tribological performance of PAI-PTFE bonded solid lubricating coatings. Progress in Organic Coatings, 154, Article 106197. https://doi.org/10.1016/j.porgcoat.2021.106197 CR - Yadav, S., Shrivas, K., & Bajpai, P. K. (2019). Role of precursors in controlling the size, shape and morphology in the synthesis of copper sulfide nanoparticles and their application for fluorescence detection. Journal of Alloys and Compounds, 772, 579-592. https://doi.org/10.1016/j.jallcom.2018.08.132 CR - Zhang, N., Zhuang, D.-M., Liu, J.-J., Li, B., Tao, K., Fang, X.-D., & Guan, M.-X. (2000). Microstructure of iron sulfide layer as solid lubrication coating produced by low-temperature ion sulfurization. Surface and Coatings Technology, 132(1), 1-5. https://doi.org/10.1016/S0257-8972(99)00661-1 UR - https://doi.org/10.29130/dubited.1735151 L1 - https://dergipark.org.tr/en/download/article-file/5024345 ER -