TY - JOUR T1 - Advanced physical techniques to prevent microorganisms in food AU - Ahmad, Abdul Mueez Y2 - 2025 DO - 10.53663/turjfas.1735346 JF - Turkish Journal of Food and Agriculture Sciences JO - Turk J Food Agric Sci PB - Burhan ÖZTÜRK WT - DergiPark SN - 2687-3818 SP - 138 EP - 160 VL - 7 IS - 2 LA - en AB - In the food industry the quality and safety of products are vital concerns, necessitating the development and implementation of effective microbial mitigation strategies. Traditional methods, such as thermal processing, are effective but, often compromise the nutritional value and sensory attributes of food. This review focuses on advanced physical techniques that offer alternative or complementary approaches to conventional methods. Non-thermal technologies, including high-pressure processing (HPP), pulsed electric fields (PEF), cold plasma, and ultraviolet (UV) light, have emerged as promising tools in enhancing food safety without significantly altering food quality. These methods are explored in terms of their mode of action and efficacy against various pathogens. The review also addresses the challenges and limitations related with the industrial adoption of these technologies, alongside future perspectives for their optimization and integration into food processing chains. By advancing the understanding of these innovative techniques, the review aims to support the production of safer and higher-quality food products. KW - Advanced techniques KW - Cold plasma KW - Decontamination KW - High pressure processing KW - Microorganisms CR - Ade-Omowaye, B. I. O., Angersbach, A., Taiwo, K. A., & Knorr, D. (2001). Use of pulsed electric field pre-treatment to improve dehydration characteristics of plant based foods. Trends in Food Science & Technology, 12(8), 285-295. https://doi.org/10.1016/S0924-2244(01)00095-4 CR - Afraz, M. T., Xu, X., Zeng, X. A., Zhao, W., Lin, S., Woo, M., & Han, Z. (2024). The science behind physical field technologies for improved extraction of juices with enhanced quality attributes. Food Physics, 1, 100008. https://doi.org/10.1016/j.foodp.2024.100008 CR - Akata, I., Torlak, E., & Erci, F. (2015). Efficacy of gaseous ozone for reducing microflora and foodborne pathogens on button mushroom. Postharvest Biology and Technology, 109, 40-44. https://doi.org/10.1016/j.postharvbio.2015.06.008 CR - Akdemir Evrendilek, G. (2022). Pulsed electric field processing of red wine: effect on wine quality and microbial inactivation. Beverages, 8(4), 78. https://doi.org/10.3390/beverages8040078 CR - Al-Haddad, K. S., Al-Qassemi, R. A., & Robinson, R. K. (2005). The use of gaseous ozone and gas packaging to control populations of Salmonella infantis and Pseudomonas aeruginosa on the skin of chicken portions. Food control, 16(5), 405-410. https://doi.org/10.1016/j.foodcont.2004.04.009 CR - Alexa, E. A., Papadochristopoulos, A., O’Brien, T., & Burgess, C. M. (2024). Microbial contamination of food. In Food Packaging and Preservation (pp. 3-19). Academic Press. https://doi.org/10.1016/B978-0-323-90044-7.00001-X CR - Allison, A., Daniels, E., Chowdhury, S., & Fouladkhah, A. (2018). Effects of elevated hydrostatic pressure against mesophilic background microflora and habituated Salmonella serovars in orange juice. Microorganisms, 6(1), 23. https://doi.org/10.3390/microorganisms6010023 CR - Álvarez, I., Raso, J., Palop, A., & Sala, F. J. (2000). Influence of different factors on the inactivation of Salmonella senftenberg by pulsed electric fields. International Journal of Food Microbiology, 55(1-3), 143-146. https://doi.org/10.1016/S0168-1605(00)00173-2 CR - Alves, H., Alencar, E. R. D., Ferreira, W. F. D. S., Silva, C. R. D., & Ribeiro, J. L. (2019). Aspectos microbiológicos e físico-químicos de morango exposto ao gás ozônio em diferentes concentrações durante o armazenamento. Brazilian Journal of Food Technology, 22, e2018002. https://doi.org/10.1590/1981-6723.00218 CR - Andrés, V., Villanueva, M.-J., & Tenorio, M.-D. (2016). Influence of high pressure processing on microbial shelf life, sensory profile, soluble sugars, organic acids, and mineral content of milk- and soy-smoothies. LWT - Food Science and Technology, 65, 98-105. https://doi.org/https://doi.org/10.1016/j.lwt.2015.07.066 CR - Ansari, J. A., Ismail, M., & Farid, M. (2019). Investigate the efficacy of UV pretreatment on thermal inactivation of Bacillus subtilis spores in different types of milk. Innovative Food Science & Emerging Technologies, 52, 387-393. https://doi.org/https://doi.org/10.1016/j.ifset.2019.02.002 CR - Anupma, S. K., Sumanshu, S. (2024). Microbial spoilage of food: understanding the culprits and preservation strategies. In Futuristic Trends in Agriculture Engineering & Food Sciences, 3, 18-137. https://www.doi.org/10.58532/V3BCAG21P2CH7 CR - Arshad, R. N., Abdul-Malek, Z., Jusoh, Y. M., Radicetti, E., Tedeschi, P., Mancinelli, R., ... & Aadil, R. M. (2022). Sustainable electroporator for continuous pasteurisation: Design and performance evaluation with orange juice. Sustainability, 14(3), 1896. https://doi.org/10.3390/su14031896 CR - Ashrafudoulla, M., Ulrich, M. S., Toushik, S. H., Nahar, S., Roy, P. K., Mizan, F. R., ... & Ha, S. D. (2023). Challenges and opportunities of non-conventional technologies concerning food safety. World's Poultry Science Journal, 79(1), 3-26. https://doi.org/10.1080/00439339.2023.2163044 CR - Asill, R. V., Azizi, M., Bahreini, M., & Arouiee, H. (2013). The investigation of decontamination effects of ozone gas on microbial load and essential oil of several medicinal plants. Notulae Scientia Biologicae, 5(1), 34-38. https://doi.org/10.15835/nsb518297 CR - Baba, K., Kajiwara, T., Watanabe, S., Katsuki, S., Sasahara, R., & Inoue, K. (2018). Low‐temperature pasteurization of liquid whole egg using intense pulsed electric fields. Electronics and communications in Japan, 101(2), 87-94. https://doi.org/10.1002/ecj.12053 CR - Bang, I. H., Kim, Y. E., Lee, S. Y., & Min, S. C. (2020). Microbial decontamination of black peppercorns by simultaneous treatment with cold plasma and ultraviolet C. Innovative Food Science & Emerging Technologies, 63, 102392. https://doi.org/10.1016/j.ifset.2020.102392 CR - Banu, M. S., Sasikala, P., Dhanapal, A., Kavitha, V., Yazhini, G., & Rajamani, L. (2012). Cold plasma as a novel food processing technology. IJETED, 4(2), 803-818. CR - Barbosa-Cánovas, G. V., Pothakamury, U. R., Gongora-Nieto, M. M., & Swanson, B. G. (1999). Preservation of foods with pulsed electric fields. pp. 197, Elsevier. CR - Baumann, A. R., Martin, S. E., & Feng, H. A. O. (2009). Removal of Listeria monocytogenes biofilms from stainless steel by use of ultrasound and ozone. Journal of Food Protection, 72(6), 1306-1309. https://doi.org/10.4315/0362-028X-72.6.1306 CR - Bialka, K. L., & Demirci, A. (2007). Decontamination of Escherichia coli O157: H7 and Salmonella enterica on blueberries using ozone and pulsed UV‐light. Journal of Food Science, 72(9), M391-M396. https://doi.org/10.1111/j.1750-3841.2007.00517.x CR - Bilbao-Sáinz, C., Younce, F. L., Rasco, B., & Clark, S. (2009). Protease stability in bovine milk under combined thermal-high hydrostatic pressure treatment. Innovative Food Science & Emerging Technologies, 10(3), 314-320. https://doi.org/https://doi.org/10.1016/j.ifset.2009.01.003 CR - Birmpa, A., Sfika, V., & Vantarakis, A. (2013). Ultraviolet light and Ultrasound as non-thermal treatments for the inactivation of microorganisms in fresh ready-to-eat foods. International Journal of Food Microbiology, 167(1), 96-102. https://doi.org/https://doi.org/10.1016/j.ijfoodmicro.2013.06.005 CR - Caminiti, I. M., Palgan, I., Muñoz, A., Noci, F., Whyte, P., Morgan, D. J., . . . Lyng, J. G. (2012). The Effect of ultraviolet light on microbial inactivation and quality attributes of apple juice. Food and Bioprocess Technology, 5(2), 680-686. https://doi.org/10.1007/s11947-010-0365-x CR - Cassar, J., Mills, E., Campbell, J., & Demirci, A. (2018). Pulsed UV Light as a microbial reduction intervention for boneless/skinless chicken thigh meat. Meat and Muscle Biology, 2, 142-142. https://doi.org/10.22175/rmc2018.126 CR - Cavalcante, M. A., Leite Júnior, B. D. C., Tribst, A. A. L., & Cristianini, M. (2013). Improvement of the raw milk microbiological quality by ozone treatment. International Food Research Journal, 20(4), 2017-2021. CR - Chai, C., Lee, J., Lee, Y., Na, S., & Park, J. (2014). A combination of TiO2–UV photocatalysis and high hydrostatic pressure to inactivate Bacillus cereus in freshly squeezed Angelica keiskei juice. LWT-Food Science and Technology, 55(1), 104-109. https://doi.org/https://doi.org/10.1016/j.lwt.2013.08.015 CR - Chen, J. H., Ren, Y., Seow, J., Liu, T., Bang, W. S., & Yuk, H. G. (2012). Intervention technologies for ensuring microbiological safety of meat: current and future trends. Comprehensive Reviews in Food Science and Food Safety, 11(2), 119-132. https://doi.org/10.1111/j.1541-4337.2011.00177.x CR - Cho, Y., Choi, J. H., Hahn, T. W., & Lee, S. K. (2014). Effect of gaseous ozone exposure on the bacteria counts and oxidative properties of ground hanwoo beef at refrigeration temperature. Korean Journal For Food Science of Animal Resources, 34(4), 525. https://doi.org/10.5851/kosfa.2014.34.4.525 CR - Choi, S., Puligundla, P., & Mok, C. (2016). Corona discharge plasma jet for inactivation of Escherichia coli O157: H7 and Listeria monocytogenes on inoculated pork and its impact on meat quality attributes. Annals of Microbiology, 66(2), 685-694. https://doi.org/10.1007/s13213-015-1147-5 CR - Christen, L., Lai, C. T., Hartmann, B., Hartmann, P. E., & Geddes, D. T. (2013). Ultraviolet-C Irradiation: A novel pasteurization method for donor human milk. PLoS One, 8(6), e68120. https://doi.org/10.1371/journal.pone.0068120 CR - Chuajedton, A., Uthaibutra, J., Pengphol, S., & Whangchai, K. (2017). Inactivation of Escherichia coli O157: H7 by treatment with different temperatures of micro-bubbles ozone containing water. International Food Research Journal, 24(3), 1006-1010 CR - Crawford, Y. J., Murano, E. A., Olson, D. G., & Shenoy, K. (1996). Use of high hydrostatic pressure and irradiation to eliminate clostridium sporogenes spores in chicken breast. Journal of Food Protection, 59(7), 711-715. https://doi.org/https://doi.org/10.4315/0362-028X-59.7.711 CR - Dangal, A., Timsina, P., Dahal, S., Rai, K., & Giuffre, A. M. (2024). Advances in non-thermal food processing methods-principle advantages and limitations for the establishment of minimal food quality as well as safety issues: a review. Current Nutrition & Food Science, 20(7), 836-849. https://doi.org/10.2174/0115734013250808230921105514 CR - Dasan, B. G., Mutlu, M., & Boyaci, I. H. (2016). Decontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnuts via atmospheric pressure fluidized bed plasma reactor. International Journal of Food Microbiology, 216, 50-59. https://doi.org/https://doi.org/10.1016/j.ijfoodmicro.2015.09.006 CR - de Souza, P. M., Müller, A., Fernández, A., & Stahl, M. (2014). Microbiological efficacy in liquid egg products of a UV-C treatment in a coiled reactor. Innovative Food Science & Emerging Technologies, 21, 90-98. https://doi.org/https://doi.org/10.1016/j.ifset.2013.10.017 CR - da Silva Campelo, M. C., Rebouças, L. D. O. S., de Oliveira Vitoriano, J., Junior, C. A., da Silva, J. B. A., & de Oliveira Lima, P. (2019). Use of cold atmospheric plasma to preserve the quality of white shrimp (Litopenaeus vannamei). Journal of Food Protection, 82(7), 1217-1223. https://doi.org/10.4315/0362-028X.JFP-18-369 CR - Degala, H. L., Scott, J. R., Nakkiran, P., Mahapatra, A. K., & Kannan, G. (2016). Inactivation of E. coli O157: H7 on goat meat surface using ozonated water alone and in combination with electrolyzed oxidizing water. In 2016 ASABE Annual International Meeting (p. 1). American Society of Agricultural and Biological Engineers. https://doi.org/10.13031/aim.20162462209 CR - Delso, C., Berzosa, A., Sanz, J., Álvarez, I., & Raso, J. (2023). Microbial decontamination of red wine by pulsed electric fields (PEF) after alcoholic and malolactic fermentation: Effect on Saccharomyces cerevisiae, Oenococcus oeni, and oenological parameters during storage. Foods, 12(2), 278. https://doi.org/10.3390/foods12020278 CR - Devatkal, S., Somerville, J., Thammakulkrajang, R., & Balasubramaniam, V. M. (2015). Microbiological efficacy of pressure assisted thermal processing and natural extracts against Bacillus amyloliquefaciens spores suspended in deionized water and beef broth. Food and Bioproducts Processing, 95, 183-191. https://doi.org/10.1016/j.fbp.2015.05.007 CR - Dobrynin, D., Fridman, G., Friedman, G., & Fridman, A. (2009). Physical and biological mechanisms of direct plasma interaction with living tissue. New Journal of Physics, 11(11), 115020. https://doi.org/10.1088/1367-2630/11/11/115020 CR - Dunn, J. (2019). Pulsed electric field processing: an overview. Pulsed Electric Fields In Food Processing, 1-30. CR - Dziadek, K., Kopeć, A., Dróżdż, T., Kiełbasa, P., Ostafin, M., Bulski, K., & Oziembłowski, M. (2019). Effect of pulsed electric field treatment on shelf life and nutritional value of apple juice. Journal of Food Science and Technology, 56(3), 1184-1191. https://doi.org/10.1007/s13197-019-03581-4 CR - Ehlbeck, J., Schnabel, U., Polak, M., Winter, J., Von Woedtke, T., Brandenburg, R., ... & Weltmann, K. D. (2010). Low temperature atmospheric pressure plasma sources for microbial decontamination. Journal of Physics D: Applied Physics, 44(1), 013002. https://doi.org/10.1088/0022-3727/44/1/013002 CR - Ermolaeva, S. A., Varfolomeev, A. F., Chernukha, M. Y., Yurov, D. S., Vasiliev, M. M., Kaminskaya, A. A., ... & Gintsburg, A. L. (2011). Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. Journal of Medical Microbiology, 60(1), 75-83. https://doi.org/10.1099/jmm.0.020263-0 CR - Espina, L., Monfort, S., Álvarez, I., García-Gonzalo, D., & Pagán, R. (2014). Combination of pulsed electric fields, mild heat and essential oils as an alternative to the ultrapasteurization of liquid whole egg. International Journal of Food Microbiology, 189, 119-125. https://doi.org/10.1016/j.ijfoodmicro.2014.08.002 CR - Evelyn, Milani, E., & Silva, F. V. M. (2017). Comparing high pressure thermal processing and thermosonication with thermal processing for the inactivation of bacteria, moulds, and yeasts spores in foods. Journal of Food Engineering, 214, 90-96. https://doi.org/10.1016/j.jfoodeng.2017.06.027 CR - Falguera, V., Pagán, J., Garza, S., Garvín, A., & Ibarz, A. (2011). Ultraviolet processing of liquid food: A review. Part 1: Fundamental engineering aspects. Food Research International, 44, 1571–1579. https://doi.org/10.1016/j.foodres.2011.02.056 CR - Faridnia, F., Ma, Q. L., Bremer, P. J., Burritt, D. J., Hamid, N., & Oey, I. J. (2015). Effect of freezing as pre-treatment prior to pulsed electric field processing on quality traits of beef muscles. Innovative Food Science & Emerging Technologies, 29, 31–40. https://doi.org/10.1016/j.ifset.2014.09.007 CR - Fernández, A., Noriega, E., & Thompson, A. J. (2013). Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology. Food Microbiology, 33(1), 24–29. https://doi.org/10.1016/j.fm.2012.08.007 CR - Flores-Cervantes, D. X., Palou, E., & López-Malo, A. (2013). Efficacy of individual and combined UV-C light and food antimicrobial treatments to inactivate Aspergillus flavus or A. niger spores in peach nectar. Innovative Food Science & Emerging Technologies, 20, 244–252. https://doi.org/10.1016/j.ifset.2013.08.003 CR - Fundo, J. F., Miller, F. A., Tremarin, A., Garcia, E., Brandão, T. R. S., & Silva, C. L. M. (2018). Quality assessment of Cantaloupe melon juice under ozone processing. Innovative Food Science & Emerging Technologies, 47, 461–466. https://doi.org/10.1016/j.ifset.2018.04.016 CR - Gabriel, A. A., & Musni, A. C. (2019). Prior physicochemical stress exposures and subsequent UV-C resistance of E. coli O157:H7 in coconut liquid endosperm. Food and Bioproducts Processing, 117, 250–257. https://doi.org/10.1016/j.fbp.2019.06.011 CR - Gallagher, M. J., Vaze, N., Gangoli, S., Vasilets, V. N., Gutsol, A. F., Milovanova, T. N., & Fridman, A. A. (2007). Rapid inactivation of airborne bacteria using atmospheric pressure dielectric barrier grating discharge. IEEE Transactions on Plasma Science, 35(5), 1501–1510. https://doi.org/10.1109/TPS.2007.905209 CR - Gao, Y., Qiu, W., Wu, D., & Fu, Q. (2011). Assessment of Clostridium perfringens spore response to high hydrostatic pressure and heat with nisin. Applied Biochemistry and Biotechnology, 164(7), 1083–1095. https://doi.org/10.1007/s12010-011-9196-0 CR - Gayán, E., Condón, S., & Álvarez, I. (2014). Biological aspects in food preservation by ultraviolet light: A review. Food and Bioprocess Technology, 7(1), 1–20. https://doi.org/10.1007/s11947-013-1168-7 CR - Giannoglou, M., Stergiou, P., Dimitrakellis, P., Gogolides, E., Stoforos, N. G., & Katsaros, G. (2020). Effect of cold atmospheric plasma processing on quality and shelf-life of ready-to-eat rocket leafy salad. Innovative Food Science & Emerging Technologies, 66, 102502. https://doi.org/10.1016/j.ifset.2020.102502 CR - Gibson, K. E., Almeida, G., Jones, S. L., Wright, K., & Lee, J. A. (2019). Inactivation of bacteria on fresh produce by batch wash ozone sanitation. Food Control, 106, 106747. https://doi.org/10.1016/j.foodcont.2019.106747 CR - Gouma, M., Gayán, E., Raso, J., Condón, S., & Álvarez, I. (2015). Inactivation of spoilage yeasts in apple juice by UV–C light and in combination with mild heat. Innovative Food Science & Emerging Technologies, 32, 146–155. https://doi.org/10.1016/j.ifset.2015.09.008 CR - Graves, D. B. (2014). Oxy-nitroso shielding burst model of cold atmospheric plasma therapeutics. Clinical Plasma Medicine, 2(2), 38–49. https://doi.org/10.1016/j.cpme.2014.11.001 CR - Guzel-Seydim, Z. B., Greene, A. K., & Seydim, A. C. (2004). Use of ozone in the food industry. LWT – Food Science and Technology, 37(4), 453–460. https://doi.org/10.1016/j.lwt.2003.10.014 CR - Ha, J.-W., & Kang, D.-H. (2015). Enhanced inactivation of food-borne pathogens in ready-to-eat sliced ham by near-infrared heating combined with UV-C irradiation and mechanism of the synergistic bactericidal action. Applied and Environmental Microbiology, 81(1), 2–8. https://doi.org/10.1128/AEM.01862-14 CR - Hamidi-Oskouei, A. M., James, C., & James, S. J. (2015). The efficiency of UV-C radiation in the inactivation of Listeria monocytogenes on beef-agar food models. Food Tech Biotech, 53(2), 231–236. https://doi.org/10.17113/ftb.53.02.15.3966 CR - Han, L., Patil, S., Boehm, D., Milosavljević, V., Cullen, P., & Bourke, P. (2016). Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus. Applied and Environmental Microbiology, 82(2), 450–458. https://doi.org/10.1128/AEM.02660-15 CR - Hayakawa, I., Kanno, T., Yoshiyama, K., & Fujio, Y. (1994). Oscillatory compared with continuous high pressure sterilization on Bacillus stearothermophilus spores. Journal of Food Science, 59(1), 164–167.https://doi.org/10.1111/j.1365-2621.1994.tb06924.x CR - Heinz, V., & Knorr, D. (2001). Effects of high pressure on spores. In M. E. G. Hendrickx, D. Knorr, L. Ludikhuyze, A. Van Loey, & V. Heinz (Eds.), Ultra High Pressure Treatments of Foods (pp. 77–113). https://doi.org/10.1007/978-1-4615-0723-9_4 CR - Hertwig, C., Reineke, K., Ehlbeck, J., Knorr, D., & Schlüter, O. (2015). Decontamination of whole black pepper using different cold atmospheric pressure plasma applications. Food Control, 55, 221–229. https://doi.org/10.1016/j.foodcont.2015.03.003 CR - Hodgins, A., Mittal, G., & Griffiths, M. W. (2002). Pasteurization of fresh orange juice using low-energy pulsed electrical field. Journal of Food Science, 67(6), 2294–2299. https://doi.org/10.1111/j.1365-2621.2002.tb09543.x CR - Holah, J., Lelieveld, H., & Gabric, D. (2016). Handbook of hygiene control in the food industry. Woodhead Publishing. CR - Hoover, D. G., Metrick, C., Papineau, A. M., Farkas, D. F., & Knorr, D. (1989). Biological effects of high hydrostatic pressure on food microorganisms. Food Technology, 43, 99–107. CR - Jemni, M., Gómez, P. A., Souza, M., Chaira, N., Ferchichi, A., Otón, M., & Artés, F. (2014). Combined effect of UV-C, ozone and electrolyzed water for keeping overall quality of date palm. LWT – Food Science and Technology, 59(2), 649–655. https://doi.org/10.1016/j.lwt.2014.07.016 CR - Jin, T. Z., Yu, Y., & Gurtler, J. B. (2017). Effects of pulsed electric field processing on microbial survival, quality change and nutritional characteristics of blueberries. LWT – Food Sci Technol, 77, 517–524. https://doi.org/10.1016/j.lwt.2016.12.009 CR - Pestana, J. M., Monteiro, B. W., Lehn, D. N., & Souza, C. F. V. (2015). Effects of pasteurization and ultra-high temperature processes on proximate composition and fatty acid profile in bovine milk. Amer Journal of Food Technology, 10, 265–272. https://doi.org/10.3923/ajft.2015.265.272 CR - Joshi, S. G., Cooper, M., Yost, A., Paff, M., Ercan, U. K., & Fridman, G. (2011). Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrobial Agents and Chemotherapy, 55(3), 1053–1062. https://doi.org/10.1128/aac.01002-10 CR - Juliano, P., Gaber, M. A. F. M., Romaniello, R., Tamborrino, A., Berardi, A., & Leone, A. (2023). Advances in physical technologies to improve virgin olive oil extraction efficiency in high-throughput production plants. Food Engineering Reviews, 15(4), 625–642. https://doi.org/10.1007/s12393-023-09347-1 CR - Kalagatur, N. K., Kamasani, J. R., Mudili, V., Krishna, K., Chauhan, O. P., & Sreepathi, M. H. (2018). Effect of high pressure processing on growth and mycotoxin production of Fusarium graminearum in maize. Food Bioscience, 21, 53–59. https://doi.org/10.1016/j.fbio.2017.11.005 CR - Kalchayanand, N., Worlie, D., & Wheeler, T. (2019). A novel aqueous ozone treatment as a spray chill intervention against Escherichia coli O157:H7 on surfaces of fresh beef. Journal of Food Protection, 82(11), 1874–1878. https://doi.org/10.4315/0362-028X.JFP-19-093 CR - Kantala, C., Supasin, S., Intra, P., & Rattanadecho, P. (2022). Evaluation of pulsed electric field and conventional thermal processing for microbial inactivation in Thai orange juice. Foods, 11(8), 1102. https://doi.org/10.3390/foods11081102 CR - Karanth, S., Feng, S., Patra, D., & Pradhan, A. K. (2023). Linking microbial contamination to food spoilage and food waste: The role of smart packaging, spoilage risk assessments, and date labeling. Frontiers in Microbiology, 14, 1198124. https://doi.org/10.3389/fmicb.2023.1198124 CR - Kato, M., Hayashi, R., Tsuda, T., & Taniguchi, K. (2002). High pressure-induced changes of biological membrane: Study on the membrane-bound Na(+)/K(+)-ATPase as a model system. European Journal of Biochemistry, 269(1), 110–118. https://doi.org/10.1046/j.0014-2956.2002.02621.x CR - Keklik, N. M., Krishnamurthy, K., & Demirci, A. (2012). Microbial decontamination of food by ultraviolet (UV) and pulsed UV light. In A. Demirci & M. O. Ngadi (Eds.), Microbial Decontamination in the Food Industry (pp. 344–369). Woodhead Publishing. https://doi.org/10.1533/9780857095756.2.344 CR - Khadre, M. A., Yousef, A. E., & Kim, J. G. (2001). Microbiological aspects of ozone applications in food: A review. Journal of Food Science, 66(9), 1242–1252. https://doi.org/10.1111/j.1365-2621.2001.tb15196.x CR - Kim, H. J., Yong, H. I., Park, S. H., Kim, K. J., Bae, Y. S., Choe, W. H., & Jo, C. (2013). Effect of inactivating Salmonella Typhimurium in raw chicken breast and pork loin using an atmospheric pressure plasma jet. Food Control, 32(2), 562–567. https://doi.org/10.1016/j.foodcont.2013.01.027 CR - Kim, J.-G., Yousef, A. E., & Khadre, M. A. (2003). Ozone and its current and future application in the food industry. Advances in Food and Nutrition Research, 45, 167–218. https://doi.org/10.1016/S1043-4526(03)45005-3 CR - Kim, Y., Choi, Y., Kim, S., Park, J., Chung, M., Song, K. B., & Park, J. J. (2009). Disinfection of iceberg lettuce by titanium dioxide–UV photocatalytic reaction. Journal of Food Protection, 72(9), 1916–1922. https://doi.org/10.4315/0362-028X-72.9.1916 CR - Koutchma, T. (2009). Advances in ultraviolet light technology for non-thermal processing of liquid foods. Food and Bioprocess Technology, 2(2), 138–155. https://doi.org/10.1007/s11947-008-0178-3 CR - Kowalski, W. (2009). UV effects on materials. In W. Kowalski (Ed.), Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection (pp. 361–381). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-01999-9_15 CR - Landl, A., Abadias, M., Sárraga, C., Viñas, I., & Picouet, P.A.(2010). Effect of high pressure processing on the quality of acidified Granny Smith apple purée product. Innov Food Sci Emerg Technol 11(4), 557–564. https://doi.org/10.1016/j.ifset.2010.09.001 CR - Laroussi, M. (2009). Low-temperature plasmas for medicine? IEEE Transactions on Plasma Science, 37(6), 714–725. https://doi.org/10.1109/TPS.2009.2017267 CR - Ledy, A., Sulistiyani, & Trijoko, T. (2020). The ultraviolet light (UV) technology as a disinfection of drinking water: A literature study. International Journal of Health, Education & Social (IJHES), 3(6). https://doi.org/10.1234/ijhes.v3i6.95 CR - Li, R., Wang, Y., Wang, S., & Liao, X. (2015). A comparative study of changes in microbiological quality and physicochemical properties of N₂-infused and N₂-degassed banana smoothies after high pressure processing. Food and Bioprocess Technology, 8(2), 333–342. https://doi.org/10.1007/s11947-014-1401-z CR - Linton, M., & Patterson, M. F. (2000). High pressure processing of foods for microbiological safety and quality. Acta Microbiologica et Immunologica Hungarica, 47(2–3), 175–182. https://doi.org/10.1556/amicr.47.2000.2-3.3 CR - Lis, K. A., Boulaaba, A., Binder, S., Li, Y., Kehrenberg, C., Zimmermann, J. L., & Ahlfeld, B. (2018). Inactivation of Salmonella Typhimurium and Listeria monocytogenes on ham with nonthermal atmospheric pressure plasma. PLoS ONE, 13(5), e0197773. https://doi.org/10.1371/journal.pone.0197773 CR - Liu, C., Li, X., & Chen, H. (2015). Application of water-assisted ultraviolet light processing on the inactivation of murine norovirus on blueberries. International J Food Microbiol, 214, 18–23. https://doi.org/10.1016/j.ijfoodmicro.2015.07.023 CR - Liu, F., Li, R., Wang, Y., Bi, X., & Liao, X. (2014). Effects of high hydrostatic pressure and high-temperature short-time on mango nectars: Changes in microorganisms, acid invertase, 5-hydroxymethylfurfural, sugars, viscosity, and cloud. Innovative Food Science & Emerging Technologies, 22, 22–30. https://doi.org/10.1016/j.ifset.2013.11.014 CR - Liu, F., Wang, Y., Bi, X., Guo, X., Fu, S., & Liao, X. (2013). Comparison of microbial inactivation and rheological characteristics of mango pulp after high hydrostatic pressure treatment and high temperature short time treatment. Food and Bioprocess Technology, 6(10), 2675–2684. https://doi.org/10.1007/s11947-012-0953-z CR - Lopez-Malo, A., & Palou, E. (2005). Ultraviolet light and food preservation. Novel food processing technologies, 405-422. https://doi.org/10.1201/9780203997277.ch18 CR - Loredo, A. B. G., Guerrero, S. N., Alzamora, S. M. (2015). Inactivation kinetics and growth dynamics during cold storage of Escherichia coli ATCC 11229, Listeria innocua ATCC 33090 and Saccharomyces cerevisiae KE162 in peach juice using aqueous ozone. Innovative Food Science & Emerging Technologies, 29, 271–279. https://doi.org/10.1016/j.ifset.2015.02.007 CR - Maggi, A., Gola, S., Rovere, P., Miglioli, L., Dall'Aglio, G., & Lonneborg, N. G. (1996). Effects of combined high pressure-temperature treatments on Clostridium sporogenes spores in liquid media. Industrie Conserve, 71, 8–14. CR - Mansor, A., Shamsudin, R., Adzahan, N. M., & Hamidon, M. N. (2014). Efficacy of ultraviolet radiation as non-thermal treatment for the inactivation of Salmonella Typhimurium TISTR 292 in pineapple fruit juice. Agriculture and Agricultural Science Procedia, 2, 173–180. https://doi.org/10.1016/j.aaspro.2014.11.025 CR - Manzocco, L., Plazzotta, S., Maifreni, M., Calligaris, S., Anese, M., & Nicoli, M. C. (2016). Impact of UV-C light on storage quality of fresh-cut pineapple in two different packages. LWT - Food Science and Technology, 65, 1138–1143. https://doi.org/10.1016/j.lwt.2015.10.007 CR - McLeod, A., Hovde Liland, K., Haugen, J. E., Sørheim, O., Myhrer, K. S., & Holck, A. L. (2018). Chicken fillets subjected to UV-C and pulsed UV light: Reduction of pathogenic and spoilage bacteria, and changes in sensory quality. Journal of Food Safety, 38(1), e12421. https://doi.org/10.1111/jfs.12421 CR - Mendes‐Oliveira, G., Jin, T. Z., & Campanella, O. H. (2022). Microbial safety and shelf‐life of pulsed electric field processed nutritious juices and their potential for commercial production. Journal of Food Processing and Preservation, 46(10), e16249. https://doi.org/10.1111/jfpp.16249 CR - Mendis, D., Rosenberg, M., & Azam, F. (2000). A note on the possible electrostatic disruption of bacteria. IEEE Transactions on Plasma Science, 28(4), 1304–1306. https://doi.org/10.1109/27.893321 CR - Misra, N., Tiwari, B., Raghavarao, K., & Cullen, P. J. (2011). Nonthermal plasma inactivation of food-borne pathogens. Food Engineering Reviews, 3, 159–170. https://doi.org/10.1007/s12393-011-9041-9 CR - Mohammad, Z., Kalbasi-Ashtari, A., Riskowski, G., & Castillo, A. (2019). Reduction of Salmonella and Shiga toxin-producing Escherichia coli on alfalfa seeds and sprouts using an ozone generating system. International Journal of Food Microbiology, 289, 57–63. https://doi.org/10.1016/j.ijfoodmicro.2018.08.023 CR - Moreau, M., Orange, N., & Feuilloley, M. (2008). Non-thermal plasma technologies: New tools for bio-decontamination. Biotechnology Advances, 26(6), 610–617. https://doi.org/10.1016/j.biotechadv.2008.08.001 CR - Mosqueda-Melgar, J., Raybaudi-Massilia, R. M., & Martín-Belloso, O. (2012). Microbiological shelf life and sensory evaluation of fruit juices treated by high-intensity pulsed electric fields and antimicrobials. Food and Bioprocess Technology, 90(2), 205–214. https://doi.org/10.1016/j.fbp.2011.03.004 CR - Moussa-Ayoub, T. E., Jäger, H., Knorr, D., El-Samahy, S. K., Kroh, L. W., & Rohn, S. (2017). Impact of pulsed electric fields, high hydrostatic pressure, and thermal pasteurization on selected characteristics of Opuntia dillenii cactus juice. LWT - Food Science and Technology, 79, 534–542. https://doi.org/10.1016/j.lwt.2016.10.061 CR - Muhlisin, M., Utama, D. T., Lee, J. H., Choi, J. H., & Lee, S. K. (2016). Effects of gaseous ozone exposure on bacterial counts and oxidative properties in chicken and duck breast meat. Korean Journal for Food Science of Animal Resources, 36(3), 405. https://doi.org/10.5851/kosfa.2016.36.3.405 CR - Mukhopadhyay, S., & Ramaswamy, R. (2012). Application of emerging technologies to control Salmonella in foods: A review. Food Research International, 45(2), 666–677. https://doi.org/10.1016/j.foodres.2011.05.016 CR - Mukhopadhyay, S., Sokorai, K., Ukuku, D., Fan, X., & Juneja, V. (2017). Effect of high hydrostatic pressure processing on the background microbial loads and quality of cantaloupe puree. Food Research International, 91, 55–62. https://doi.org/10.1016/j.foodres.2016.11.029 CR - Mukhopadhyay, S., Sokorai, K., Ukuku, D., Fan, X., Juneja, V., Sites, J., & Cassidy, J. (2016). Inactivation of Salmonella enterica and Listeria monocytogenes in cantaloupe puree by high hydrostatic pressure with/without added ascorbic acid. International Journal of Food Microbiology, 235, 77–84. https://doi.org/10.1016/j.ijfoodmicro.2016.07.007 CR - Munhõs, M., Navarro, R., Nunez, S., Kozusny-Andreani, D., & Baptista, A. (2019). Reduction of Pseudomonas inoculated into whole milk and skim milk by ozonation. In XXVI Brazilian Congress on Biomedical Engineering: CBEB 2018 (Vol. 1). Armação de Buzios, RJ, Brazil. https://doi.org/10.1007/978-981-13-2119-1_130 CR - Nehra, V., Kumar, A., & Dwivedi, H. (2008). Atmospheric non-thermal plasma sources. International Journal of Engineering, 2(1), 53–68. CR - Niemira, B. A. (2012). Cold plasma reduction of Salmonella and Escherichia coli O157:H7 on almonds using ambient pressure gases. Journal of Food Science, 77(3), M171–M175. https://doi.org/10.1111/j.1750-3841.2011.02594.x CR - O'Donnell, C., Tiwari, B. K., Cullen, P., & Rice, R. G. (2012). Ozone in food processing. John Wiley & Sons. CR - Ogawa, H., Fukuhisa, K., Kubo, Y., & Fukumoto, H. (1990). Pressure inactivation of yeasts, molds, and pectinesterase in Satsuma mandarin juice: Effects of juice concentration, pH, and organic acids, and comparison with heat sanitation. Agricultural and Biological Chemistry, 54(5), 1219–1225. https://doi.org/10.1080/00021369.1990.10870118 CR - Oladunjoye, A. O., & Awani-Aguma, E. U. (2024). Chapter 7: Foodborne illnesses—Prevention and control. In I. O. Ademola & O. O. Folake (Eds.), Food safety and toxicology (pp. 149–174). De Gruyter. https://doi.org/10.1515/9783110748345-007 CR - Oner, M. E., Walker, P. N., & Demirci, A. (2011). Effect of in-package gaseous ozone treatment on shelf life of blanched potato strips during refrigerated storage. Int. J Food Sci Technol, 46(2), 406–412. https://doi.org/10.1111/j.1365-2621.2010.02503.x CR - Ozkan, R., Smilanick, J. L., & Karabulut, O. A. (2011). Toxicity of ozone gas to conidia of Penicillium digitatum, Penicillium italicum, and Botrytis cinerea and control of gray mold on table grapes. Postharvest Biology and Technology, 60(1), 47–51. https://doi.org/10.1016/j.postharvbio.2010.12.004 CR - Öztekin, S., Zorlugenç, B., & Zorlugenç, F. K. (2006). Effects of ozone treatment on microflora of dried figs. Journal of Food Engineering, 75(3), 396–399. https://doi.org/10.1016/j.jfoodeng.2005.04.024 CR - Paidhungat, M., Setlow, B., Daniels, W. B., Hoover, D., Papafragkou, E., & Setlow, P. (2002). Mechanisms of induction of germination of Bacillus subtilis spores by high pressure. Applied and Environmental Microbiology, 68(6), 3172–3175. https://doi.org/10.1128/AEM.68.6.3172-3175.2002 CR - Pandiselvam, R., Subhashini, S., Banuu Priya, E., Kothakota, A., Ramesh, S., & Shahir, S. (2019). Ozone-based food preservation: A promising green technology for enhanced food safety. Ozone: Science and Engineering, 41(1), 17–34. https://doi.org/10.1080/01919512.2018.1490636 CR - Patange, A., Boehm, D., Bueno-Ferrer, C., Cullen, P., & Bourke, P. (2017). Controlling Brochothrix thermosphacta as a spoilage risk using in-package atmospheric cold plasma. Food Microbiology, 66, 48–54. https://doi.org/10.1016/j.fm.2017.04.002 CR - Pathak, N., Grossi Bovi, G., Limnaios, A., Fröhling, A., Brincat, J. P., & Taoukis, P. (2020). Impact of cold atmospheric pressure plasma processing on storage of blueberries. Journal of Food Processing and Preservation, 44(8), e14581. https://doi.org/10.1111/jfpp.14581 CR - Patterson, M. F., & Kilpatrick, D. J. (1998). The combined effect of high hydrostatic pressure and mild heat on inactivation of pathogens in milk and poultry. Journal of Food Protection, 61(4), 432–436. https://doi.org/10.4315/0362-028X-61.4.432 CR - Perera, N., Gamage, T. V., Wakeling, L., Gamlath, G. G. S., & Versteeg, C. (2010). Colour and texture of apples high pressure processed in pineapple juice. Innov Food Sci Emerg Technol, 11(1), 39–46. https://doi.org/10.1016/j.ifset.2009.08.003 CR - Perni, S., Liu, D. W., Shama, G., & Kong, M. G. (2008). Cold atmospheric plasma decontamination of the pericarps of fruit. Journal of Food Protection, 71(2), 302–308. https://doi.org/10.4315/0362-028X-71.2.302 CR - Perry, J., Rodriguez‐Romo, L., & Yousef, A. (2008). Inactivation of Salmonella enterica serovar Enteritidis in shell eggs by sequential application of heat and ozone. Lett ApplMicrobiol, 46(6), 620–625. https://doi.org/10.1111/j.1472-765X.2008.02367.x CR - Perry, J. J., & Yousef, A. E. (2011). Decontamination of raw foods using ozone-based sanitization techniques. Annual Review of Food Science and Technology, 2(1), 281–298. https://doi.org/10.1146/annurev-food-022510-133637 CR - Petrus, R. R., Churey, J. J., & Worobo, R. W. (2020). Challenging a range of high-pressure processing parameters to inactivate pathogens in orange juice. High Pressure Research, 40(4), 537–542. https://doi.org/10.1080/08957959.2020.1830081 CR - Pinela, J., & Ferreira, I. C. (2017). Nonthermal physical technologies to decontaminate and extend the shelf-life of fruits and vegetables: Trends aiming at quality and safety. Critical Reviews in Food Science and Nutrition, 57(10), 2095–2111. https://doi.org/10.1080/10408398.2015.1046547 CR - Pohlman, F. W. (2012). Ozone in meat processing. In Ozone in food processing (pp. 123–136). https://doi.org/10.1002/9781118307472 CR - Possas, A., Valero, A., García-Gimeno, R. M., Pérez-Rodríguez, F., & de Souza, P. M. (2018). Influence of temperature on the inactivation kinetics of Salmonella Enteritidis by the application of UV-C technology in soymilk. Food Control, 94, 132–139. https://doi.org/10.1016/j.foodcont.2018.06.033 CR - Proulx, J., Hsu, L. C., Miller, B. M., Sullivan, G., Paradis, K., & Moraru, C. I. (2015). Pulsed-light inactivation of pathogenic and spoilage bacteria on cheese surface. Journal of Dairy Science, 98(9), 5890–5898. https://doi.org/10.3168/jds.2015-9410 CR - Ps, K., Ba, J., Rv, S., & Gm, M. (2011). Review on the high pressure technology (HPT) for food preservation. Journal of Food Processing and Technology, 3, 1–5. http://dx.doi.org/10.4172/2157-7110.1000135 CR - Puligundla, P., Kim, J.-W., & Mok, C. (2017). Effect of corona discharge plasma jet treatment on decontamination and sprouting of rapeseed (Brassica napus L.) seeds. Food Control, 71, 376–382. https://doi.org/10.1016/j.foodcont.2016.07.021 CR - Qin, B., Zhang, Q., Barbosa-Cánovas, G. V., Swanson, B., & Pedrow, P. J. (1995). Pulsed electric field treatment chamber design for liquid food pasteurization using a finite element method. Transactions of the ASAE, 38(2), 557–565. CR - Ragni, L., Berardinelli, A., Vannini, L., Montanari, C., Sirri, F., Guerzoni, M. E., & Guarnieri, A. (2010). Non-thermal atmospheric gas plasma device for surface decontamination of shell eggs. Journal of Food Engineering, 100(1), 125–132. https://doi.org/10.1016/j.jfoodeng.2010.03.036 CR - Ramesh, T., Nayak, B., Amirbahman, A., Tripp, C. P., & Mukhopadhyay, S. (2016). Application of ultraviolet light assisted titanium dioxide photocatalysis for food safety: A review. Innov Food Sci Emerg Technol, 38, 105–115. https://doi.org/10.1016/j.ifset.2016.09.015 CR - Raso, J., Alvarez, I., Condón, S., Trepat, F. J., & Sanz, J. (2000). Predicting inactivation of Salmonella senftenberg by pulsed electric fields. Innovative Food Science & Emerging Technologies, 1(1), 21–29. https://doi.org/10.1016/S1466-8564(99)00005-3 CR - Raso, J., & Barbosa-Cánovas, G. (2003). Nonthermal preservation of foods using combined processing techniques. Critical Reviews in Food Science and Nutrition, 43, 265–285. https://doi.org/10.1080/10408690390826527 CR - Rojas-Valencia, M. J. V. (2011). Research on ozone application as disinfectant and action mechanisms on wastewater microorganisms. Journal of Environmental Science and Engineering, 3(4), 1–8. CR - Rossitto, P. V., Cullor, J. S., Crook, J., Parko, J., Sechi, P., & Cenci-Goga, B. T. (2012). Effects of UV irradiation in a continuous turbulent flow UV reactor on microbiological and sensory characteristics of cow’s milk. Journal of Food Protection, 75(12), 2197–2207. https://doi.org/10.4315/0362-028X.JFP-12-036 CR - Rowan, N., MacGregor, S. J., Anderson, J., Fouracre, R., & Farish, O. (2000). Pulsed electric field inactivation of diarrhoeagenic Bacillus cereus through irreversible electroporation. Letters in Applied Microbiology, 31(2), 110–114. https://doi.org/10.1046/j.1365-2672.2000.00772.x CR - Šalaševičius, A., Uždavinytė, D., Visockis, M., Ruzgys, P., & Šatkauskas, S. (2021). Effect of pulsed electric field (PEF) on bacterial viability and whey protein in the processing of raw milk. Applied Sciences, 11(23), 11281. https://doi.org/10.3390/app112311281 CR - Sasagawa, A., Yamazaki, A., Kobayashi, A., Hoshino, J., Ohshima, T., Sato, M., & Yamada, A. (2006). Inactivation of Bacillus subtilis spores by a combination of hydrostatic high-pressure and pulsed electric field treatments. The Review of High Pressure Science and Technology, 16(1), 45–53. https://doi.org/10.4131/jshpreview.16.45 CR - Scholtz, V., Pazlarova, J., Souskova, H., Khun, J., & Julak, J. (2015). Nonthermal plasma—A tool for decontamination and disinfection. Biotechnology Advances, 33(6), 1108–1119. https://doi.org/10.1016/j.biotechadv.2015.01.002 CR - Selma, M. V., Beltrán, D., Allende, A., Chacón-Vera, E., & Gil, M. I. (2007). Elimination by ozone of Shigella sonnei in shredded lettuce and water. Food Microbiology, 24(5), 492–499. https://doi.org/10.1016/j.fm.2006.09.005 CR - Shahbaz, H. M., Kim, S., Hong, J., Kim, J. U., Lee, D. U., Ghafoor, K., & Park, J. (2016). Effects of TiO₂–UV-C photocatalysis and thermal pasteurisation on microbial inactivation and quality characteristics of the Korean rice-and-malt drink sikhye. Journal of Food Processing and Technology, 51(1), 123–132. https://doi.org/10.1111/ijfs.12954 CR - Shahbaz, H. M., Yoo, S., Seo, B., Ghafoor, K., Kim, J. U., Lee, D.-U., & Park, J. (2016). Combination of TiO₂-UV photocatalysis and high hydrostatic pressure to inactivate bacterial pathogens and yeast in commercial apple juice. Food and Bioprocess Technology, 9(1), 182–190. https://doi.org/10.1007/s11947-015-1614-9 CR - Shao, Y., Zhu, S., Ramaswamy, H., & Marcotte, M. (2010). Compression heating and temperature control for high-pressure destruction of bacterial spores: An experimental method for kinetics evaluation. Food and Bioprocess Technology, 3(1), 71–78. https://doi.org/10.1007/s11947-008-0057-y CR - Sharma, P., Bremer, P., Oey, I., & Everett, D. (2014). Bacterial inactivation in whole milk using pulsed electric field processing. International Dairy Journal, 35(1), 49–56. https://doi.org/10.1016/j.idairyj.2013.10.005 CR - Shi, X. M., Zhang, G. J., Wu, X. L., Li, Y. X., Ma, Y., & Shao, X. J. (2011). Effect of low-temperature plasma on microorganism inactivation and quality of freshly squeezed orange juice. IEEE Transactions on Plasma Science, 39(7), 1591–1597. https://doi.org/10.1109/TPS.2011.2142012 CR - Siemer, C., Aganovic, K., Toepfl, S., & Heinz, V. (2014). Application of pulsed electric fields in food. In Advances in Food Processing Technology (pp. 645–672). https://doi.org/10.1002/9781118406281.ch26 CR - Singh, H., Bhardwaj, S. K., Khatri, M., Kim, K.-H., & Bhardwaj, N. (2021). UV-C radiation for food safety: An emerging technology for the microbial disinfection of food products. Chemical Engineering Journal, 417, 128084. https://doi.org/10.1016/j.cej.2020.128084 CR - Sobrino-López, A., & Martín-Belloso, O. (2010). Potential of high-intensity pulsed electric field technology for milk processing. Food Engineering Reviews, 2, 17–27. https://doi.org/10.1007/s12393-009-9011-7 CR - Sommer, R., Lhotsky, M., Haider, T., & Cabaj, A. (2000). UV inactivation, liquid-holding recovery, and photoreactivation of Escherichia coli O157 and other pathogenic Escherichia coli strains in water. Journal of Food Protection, 63(8), 1015–1020. https://doi.org/10.4315/0362-028x-63.8.1015 CR - Sommers, C. H., Sites, J. E., & Musgrove, M. (2010). Ultraviolet light (254 nm) inactivation of pathogens on foods and stainless steel surfaces. Journal of Food Safety, 30(2), 470–479. https://doi.org/10.1111/j.1745-4565.2010.00220.x CR - Sridipta Paul, R. D., Sreo Sree Roy, Subhangi Sahu, & Tanmoy Majhi. (2024). Utilization of non-thermal technologies for food preservation: Comparative analysis. International Journal of Research in Agronomy, 7(4S), 127–130. https://doi.org/10.33545/2618060X.2024.v7.i4Sb.564 CR - Stoffels, E., Sakiyama, Y., & Graves, D. B. (2008). Cold atmospheric plasma: Charged species and their interactions with cells and tissues. IEEE Transactions on Plasma Science, 36(4), 1441–1457. https://doi.org/10.1109/TPS.2008.2001084 CR - Syed, Q. A., Ishaq, A., Rahman, U. U., Aslam, S., & Shukat, R. (2017). Pulsed electric field technology in food preservation: A review. Journal of Nutrition & Health, 6(6), 168–172. https://doi.org/10.15406/jnhfe.2017.06.00219 CR - Tallon, M. J., & Kalman, D. S. (2025). The regulatory challenges of placing dietary ingredients on the European and US market. Journal of Dietary Supplements, 22(1), 9-24. https://doi.org/10.1080/19390211.2024.2308261 CR - Thomas-Popo, E. R. (2021). Application of atmospheric cold plasma, ultraviolet radiation, or natural antimicrobials for control of foodborne pathogenic and spoilage microorganisms [Master’s thesis, Iowa State University]. CR - Timmermans, R., Mastwijk, H., Berendsen, L., Nederhoff, A., Matser, A., Van Boekel, M., & Groot, M. N. (2019). Moderate intensity pulsed electric fields (PEF) as alternative mild preservation technology for fruit juice. International Journal of Food Microbiology, 298, 63–73. https://doi.org/10.1016/j.ijfoodmicro.2019.02.015 CR - Tokuşoğlu, Ö., Alpas, H., & Bozoğlu, F. (2010). High hydrostatic pressure effects on mold flora, citrinin mycotoxin, hydroxytyrosol, oleuropein phenolics and antioxidant activity of black table olives. Innovative Food Science & Emerging Technologies, 11(2), 250–258. https://doi.org/10.1016/j.ifset.2009.11.005 CR - Tsagkaropoulou, T., & Karatzas, K. A. G. (2024). Microbial species and strain heterogeneity affect resistance to high pressure processing. Innovative Food Science & Emerging Technologies, 94, 103645. https://doi.org/10.1016/j.ifset.2024.103645 CR - Türkmen, F. U., & Takci, H. A. M. (2018). Ultraviolet-C and ultraviolet-B lights effect on black carrot (Daucus carota ssp. sativus) juice. J Food Meas Charac, 12(2), 1038–1046. https://doi.org/10.1007/s11694-018-9719-2 CR - Van Wyk, S., Silva, F. V., & Farid, M. M. (2019). Pulsed electric field treatment of red wine: Inactivation of Brettanomyces and potential hazard caused by metal ion dissolution. Innovative Food Science & Emerging Technologies, 52, 57–65. https://doi.org/10.1016/j.ifset.2018.11.001 CR - Vercammen, A., Vivijs, B., Lurquin, I., & Michiels, C. W. (2012). Germination and inactivation of Bacillus coagulans and Alicyclobacillus acidoterrestris spores by high hydrostatic pressure treatment in buffer and tomato sauce. International Journal of Food Microbiology, 152(3), 162–167. https://doi.org/10.1016/j.ijfoodmicro.2011.02.019 CR - Vorobiev, E., Jemai, A. B., Bouzrara, H., Lebovka, N., & Bazhal, M. (2004). Pulsed electric field-assisted extraction of juice from food plants. In Novel food processing technologies (pp. 127–152). CRC Press. https://doi.org/10.1201/9780203997277.ch5 CR - Wade, W., Scouten, A., McWatters, K., Wick, R.,, W., & Beuchat, L. (2003). Efficacy of ozone in killing Listeria monocytogenes on alfalfa seeds and sprouts and effects on sensory quality of sprouts. Journal of Food Protection, 66(1), 44–51. https://doi.org/10.4315/0362-028X-66.1.44 CR - Wan, J., Coventry, J., Swiergon, P., Sanguansri, P., & Versteeg, C. (2009). Advances in innovative processing technologies for microbial inactivation and enhancement of food safety–pulsed electric field and low-temperature plasma. Trends in Food Science & Technology, 20(9), 414–424. https://doi.org/10.1016/j.tifs.2009.01.050 CR - Wilson, D. R., Dabrowski, L., Stringer, S., Moezelaar, R., & Brocklehurst, T. F. (2008). High pressure in combination with elevated temperature as a method for the sterilisation of food. Trends in Food Scince & Technology, 19(6), 289–299. https://doi.org/10.1016/j.tifs.2008.01.005 CR - Woldemariam, H. W., & Emire, S. A. (2019). High pressure processing of foods for microbial and mycotoxins control: Current trends and future prospects. Cogent Food & Agriculture, 5(1), 1622184. https://doi.org/10.1080/23311932.2019.1622184 CR - Won, M. Y., Lee, S. J., & Min, S. C. (2017). Mandarin preservation by microwave-powered cold plasma treatment. Innovative Food Science & Emerging Technologies, 39, 25–32. https://doi.org/10.1016/j.ifset.2016.10.021 CR - Wouters, P. C., Alvarez, I., & Raso, J. (2001). Critical factors determining inactivation kinetics by pulsed electric field food processing. Trends in Food Science & Technology, 12(3–4), 112–121. https://doi.org/10.1016/S0924-2244(01)00067-X CR - Wouters, P. C., Dutreux, N., Smelt, J. P., & Lelieveld, H. L. (1999). Effects of pulsed electric fields on inactivation kinetics of Listeria innocua. J AgricFood Microbiol, 65(12), 5364–5371.https://doi.org/10.1128/AEM.65.12.5364-5371.1999 CR - Yildiz, S., Shin, G. Y., Franco, B. G., Tang, J., Sablani, S., & Barbosa-Cánovas, G. V. (2023). Equivalent processing for pasteurization of a pineapple juice–coconut milk blend by selected nonthermal technologies. Journal of Food Science, 88(1), 403–416. https://doi.org/10.1111/1750-3841.16403 CR - Yin, R., Dai, T., Avci, P., Jorge, A. E., Hamblin, M. R. (2013). Light based anti-infectives: Ultraviolet C irradiation, photodynamic therapy, blue light, and beyond. Current Opinion in Pharmacology, 13(5), 731–762. https://doi.org/10.1016/j.coph.2013.08.009 CR - Zhang, M., Oh, J. K., Cisneros-Zevallos, L., & Akbulut, M. (2013). Bactericidal effects of nonthermal low-pressure oxygen plasma on S. typhimurium LT2 attached to fresh produce surfaces. Journal of Food Engineering, 119(3), 425–432. https://doi.org/10.1016/j.jfoodeng.2013.05.045 CR - Zhu, Y., Koutchma, T., Warriner, K., & Zhou, T. (2014). Reduction of patulin in apple juice products by UV light of different wavelengths in the UV-C range. Journal of Food Protection, 77(6), 963–971. https://doi.org/10.4315/0362-028x.Jfp-13-429 CR - Zhuang, H., Rothrock Jr, M. J., Line, J. E., Lawrence, K. C., Gamble, G. R., Bowker, B. C., … Technologies, E. (2020). Optimization of in-package cold plasma treatment conditions for raw chicken breast meat with response surface methodology. Innovative Food Science & Emerging Technologies, 66, 102477. https://doi.org/10.1016/j.ifset.2020.102477 CR - Ziuzina, D., Patil, S., Cullen, P., Boehm, D., & Bourke, P. (2014). Dielectric barrier discharge atmospheric cold plasma for inactivation of Pseudomonas aeruginosa biofilms. Plasma Medicine, 4(1–4). https://doi.org/10.1615/PlasmaMed.2014011996 CR - Ziyaina, M., & Rasco, B. (2021). Inactivation of microbes by ozone in the food industry: A review. American Journal of Food Science, 15(3), 113–120. https://doi.org/10.5897/AJFS2020.2074 CR - Zorlugenç, B., Zorlugenç, F. K., Öztekin, S., & Evliya, I. B. (2008). The influence of gaseous ozone and ozonated water on microbial flora and degradation of aflatoxin B1 in dried figs. Journal of Food and Toxicology, 46(12), 3593–3597. https://doi.org/10.1016/j.fct.2008.09.003 CR - Zuo, H., Wang, B., Zhang, J., Zhong, Z., & Tang, Z. (2024). Research progress on bacteria-reducing pretreatment technology of meat. Journal of Food, 13(15), 2361. https://doi.org/10.3390/foods13152361 UR - https://doi.org/10.53663/turjfas.1735346 L1 - https://dergipark.org.tr/en/download/article-file/5025231 ER -