TY - JOUR T1 - Detailed Aerial Mapping of Photovoltaic Power Plants Through Semantically Significant Keypoints AU - Kozák, Viktor AU - Chudoba, Jan AU - Přeučil, Libor PY - 2025 DA - October Y2 - 2025 DO - 10.26833/ijeg.1737764 JF - International Journal of Engineering and Geosciences JO - IJEG PB - Murat YAKAR WT - DergiPark SN - 2548-0960 SP - 352 EP - 362 VL - 11 IS - 2 LA - en AB - An accurate and up-to-date model of a photovoltaic (PV) power plant is essential for its optimal operation and maintenance. However, such a model may not be easily available. This work introduces a novel approach for PV power plant mapping based on aerial overview images. It enables the automation of the mapping process while removing the reliance on third-party data. The presented mapping method takes advantage of the structural layout of the power plants to achieve detailed modeling down to the level of individual PV modules. The approach relies on visual segmentation of PV modules in overview images and the inference of structural information in each image, assigning modules to individual benches, rows, and columns. We identify visual keypoints related to the layout and use these to merge detections from multiple images while maintaining their structural integrity. The presented method was experimentally verified and evaluated on two different power plants. The final fusion of 3D positions and semantic structures results in a compact georeferenced model suitable for power plant maintenance. KW - UAV KW - photogrammetry KW - photovoltaic KW - mapping KW - structure-from-motion KW - aerial systems KW - PV KW - Computer vision for automation CR - Gholami, A. (2024). Exploring drone classifications and applications: a review. International Journal of Engineering and Geosciences, 9(3), 418-442. https://doi.org/10.26833/ijeg.1428724 CR - Niccolai, A., Grimaccia, F., & Leva, S. (2019). Advanced asset management tools in photovoltaic plant monitoring: UAV-based digital mapping. Energies, 12(24). https://doi.org/10.3390/en12244736 CR - Michail, A., Livera, A., Tziolis, G., Carús Candás, J. L., Fernandez, A., Antuña Yudego, E., Fernández Martínez, D., Antonopoulos, A., Tripolitsiotis, A., Partsinevelos, P., Koutroulis, E., & Georghiou, G. E. (2024). A comprehensive review of unmanned aerial vehicle-based approaches to support photovoltaic plant diagnosis. Heliyon, 10(1), e23983. https://doi.org/10.1016/j.heliyon.2024.e23983 CR - Niccolai, A., Gandelli, A., Grimaccia, F., Zich, R., & Leva, S. (2019). Overview on photovoltaic inspections procedure by means of unmanned aerial vehicles. 2019 IEEE Milan PowerTech, 1–6. https://doi.org/10.1109/PTC.2019.8810987 CR - Yakar, M., & Dogan, Y. (2018, November). 3D Reconstruction of residential areas with SfM photogrammetry. In Conference of the Arabian Journal of Geosciences (pp. 73-75). Cham: Springer International Publishing. CR - Jiang, H., Yao, L., Lu, N., Qin, J., Liu, T., Liu, Y., & Zhou, C. (2021). Multi-resolution dataset for photovoltaic panel segmentation from satellite and aerial imagery. Earth System Science Data, 13(11), 5389–5401. https://doi.org/10.5194/essd-13-5389-2021 Piccinini, F., Pierdicca, R., & Malinverni, E. S. (2020). A relational conceptual model in GIS for the management of photovoltaic systems. Energies, 13(11). https://doi.org/10.3390/en13112860 CR - Kozák, V., Košnar, K., Chudoba, J., Kulich, M., & Přeučil, L. (2025). Visual localization via semantic structures in autonomous photovoltaic power plant inspection. arXiv preprint. https://doi.org/10.48550/arXiv.2501.14587 CR - Bommes, L., Buerhop-Lutz, C., Pickel, T., Hauch, J., Brabec, C., & Marius Peters, I. (2022). Georeferencing of photovoltaic modules from aerial infrared videos using structure-from-motion. Progress in Photovoltaics: Research and Applications, 30(9), 1122–1135. https://doi.org/10.1002/pip.3564 CR - He, K., Gkioxari, G., Dollár, P., & Girshick, R. B. (2017). Mask R-CNN. 2017 IEEE International Conference on Computer Vision (ICCV), 2980–2988. https://doi.org/10.1109/ICCV.2017.322 CR - Hernández-López, D., de Oña, E. R., Moreno, M. A., & González-Aguilera, D. (2023). SunMap: Towards unattended maintenance of photovoltaic plants using drone photogrammetry. Drones, 7(2). https://doi.org/10.3390/drones7020129 CR - Kaya, Y., Şenol, H. İ., Yiğit, A. Y., & Yakar, M. (2023). Car detection from very high-resolution UAV images using deep learning algorithms. Photogrammetric Engineering & Remote Sensing, 89(2), 117-123. CR - Mapillary. (2020). OpenSfM. https://github.com/mapillary/OpenSfM (Accessed June 15, 2025). CR - Abeho, D. R., Shoko, M., & Odera, P. A. (2024). Effects of camera calibration on the accuracy of Unmanned Aerial Vehicle sensor products. International Journal of Engineering and Geosciences, 9(3), 314-323. https://doi.org/10.26833/ijeg.1422619 CR - Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, 234–241. https://doi.org/10.1007/978-3-319-24574-4_28 CR - Jocher, G., Chaurasia, A., & Qiu, J. (2023). Ultralytics YOLOv8. https://github.com/ultralytics/ultralytics CR - Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderfplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830. CR - Seznam.cz, a.s., & TopGis, s.r.o. (2025). Mapy.cz. https://mapy.cz (Accessed June 15, 2025). CR - NASA Shuttle Radar Topography Mission (SRTM). (2013). Shuttle Radar Topography Mission (SRTM) Global. Distributed by OpenTopography. https://doi.org/10.5069/G9445JDF (Accessed June 15, 2025). CR - Niccolai, A., Grimaccia, F., Leva, S., & Eleftheriadis, P. (2021). Photovoltaic plant inspection by means of UAV: Current practices and future perspectives. In 2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe) (pp. 1–6). https://doi.org/10.1109/EEEIC/ICPSEurope51164.2021.9499554 CR - Álvarez Tey, G., & García-López, C. (2022). Strategy based on two stages for IR thermographic inspections of photovoltaic plants. Applied Sciences, 12(13), 6331. https://doi.org/10.3390/app12136331 CR - Gallardo-Saavedra, S., Hernández-Callejo, L., & Duque-Perez, O. (2018). Image resolution influence in aerial thermographic inspections of photovoltaic plants. IEEE Transactions on Industrial Informatics, 14(12), 5678–5686. https://doi.org/10.1109/TII.2018.2865403 CR - Morando, L., Recchiuto, C. T., Calla, J., Scuteri, P., & Sgorbissa, A. (2022). Thermal and visual tracking of photovoltaic plants for autonomous UAV inspection. Drones, 6(11), 347. https://doi.org/10.3390/drones6110347 UR - https://doi.org/10.26833/ijeg.1737764 L1 - https://dergipark.org.tr/en/download/article-file/5035745 ER -