TY - JOUR T1 - Functionalization of waste fish bone with gallic acid: Improving surface characteristics for advanced applications AU - Kızılkaya, Bayram PY - 2025 DA - September Y2 - 2025 DO - 10.33714/masteb.1738887 JF - Marine Science and Technology Bulletin JO - Mar. Sci. Tech. Bull. PB - Adem Yavuz SÖNMEZ WT - DergiPark SN - 2147-9666 SP - 122 EP - 130 VL - 14 IS - 3 LA - en AB - In this study, hydroxyapatite (H) derived from fish bones was chemically modified with gallic acid (GA), and its surface properties were thoroughly investigated. The modification was achieved through an esterification reaction between the carboxyl groups of GA and the hydroxyl groups on the hydroxyapatite surface. Comprehensive characterization of the resulting gallic acid-modified hydroxyapatite (HA) samples revealed significant changes in surface chemistry and morphology. According to the analysis results, the point of zero charge (PZC) of the surface decreased from 7.25 to 6.78 after modification, indicating a shift toward a more acidic surface character. The BET (Brunauer-Emmett-Teller) analysis results showed that the surface of fish bone particles area increased from 5.650 m2/g to 15.789 m²/g. While the pore volume increased significantly, the decrease in average pore diameter indicated a more advanced structure with higher surface activity. The zeta potential decreased from –20.40 to –10.00 mV, while surface conductivity showed a significant increase. The increase in carbon content from 14.174% to 15.014% confirms the successful binding of gallic acid organic groups (containing seven carbon atoms per molecule) onto the surface. This study shows that fish bones, a natural waste material, can be converted into a functional material through a sustainable and environmentally friendly approach. KW - Fish bone KW - Gallic acid KW - Modification KW - BET CR - Adetunji, A. I., Oberholster, P. J., & Erasmus, M. (2023). From garbage to treasure: A review on biorefinery of organic solid wastes into valuable biobased products. Bioresource Technology Reports, 24, 101610. https://doi.org/10.1016/j.biteb.2023.101610 CR - Alaghemandi, M. (2024). Sustainable solutions through innovative plastic waste recycling technologies. Sustainability, 16(23), 10401. https://doi.org/10.3390/su162310401 CR - Bayraklı, B., & Duyar, H. A. (2019). The effect of raw material freshness on fish oil quality produced in fish meal & oil plant. Journal of Anatolian Environmental and Animal Sciences, 4(3), 473–479. https://doi.org/10.35229/jaes.636002 CR - Bayraklı, B. (2023). Utilization of fish by-products for sustainable aquaculture: nutritional analysis of fishmeal derived from the by-products of Oncorhynchus mykiss. Menba Journal of Fisheries Faculty, 9(2), 8–14. https://doi.org/10.58626/menba.1360875 CR - Bayraklı, B., Özdemir, S., & Duyar, H. A. (2019). A study on fishing and fish meal-oil processing technology of anchovy (Engraulis encrasicolus) and European sprat (Sprattus sprattus) in the Black Sea. Menba Journal of Fisheries Faculty, 5(2), 9–16. CR - Bayraklı, B., Yiğit, M., Altuntaş, M., & Maita, M. (2024). Health risk assessment of metals via consumption of Rapa whelk (Rapana venosa) from the Black Sea. Journal of Agricultural Sciences, 30(3), 546–561. https://doi.org/10.15832/ankutbd.1374919 CR - Chen, L., Yang, M., Chen, Z., Xie, Z., Huang, L., Osman, A. I., Farghali, M., Sandanayake, M., Liu, E., Ahn, Y. H., Al-Muhtaseb, A. H., Rooney, D. W., & Yap, P.-S. (2024). Conversion of waste into sustainable construction materials: A review of recent developments and prospects. Materials Today Sustainability, 27, 100930. https://doi.org/10.1016/j.mtsust.2024.100930 CR - Dimović, S., Smičiklas, I., Plećaš, I., Antonović, D., & Mitrić, M. (2009). Comparative study of differently treated animal bones for Co2+ removal. Journal of Hazardous Materials, 164(1), 279–287. https://doi.org/10.1016/j.jhazmat.2008.08.013 CR - Duyar, H. A., & Bayraklı, B. (2023). Fatty acid profiles of fish oil derived by different techniques from by-products of cultured Black Sea salmon, Oncorhynchus mykiss. Journal of Agricultural Sciences, 29(3), 833–841. https://doi.org/10.15832/ankutbd.1187017 CR - Ezeorba, T. P. C., Okeke, E. S., Mayel, M. H., Nwuche, C. O., & Ezike, T. C. (2024). Recent advances in biotechnological valorization of agro-food wastes (AFW): Optimizing integrated approaches for sustainable biorefinery and circular bioeconomy. Bioresource Technology Reports, 26, 101823. https://doi.org/10.1016/j.biteb.2024.101823 CR - Hajam, Y. A., Kumar, R., & Kumar, A. (2023). Environmental waste management strategies and vermi transformation for sustainable development. Environmental Challenges, 13, 100747. https://doi.org/10.1016/j.envc.2023.100747 CR - Jung, H., Shin, G., Kwak, H., Tan Hao, L., Jegal, J., Kim, H. J., Jeon, H., Park, J., & Oh, D. X. (2023). Review of polymer technologies for improving the recycling and upcycling efficiency of plastic waste. Chemosphere, 320, 138089. https://doi.org/10.1016/j.chemosphere.2023.138089 CR - Kızılkaya, B., & Tan, E. (2020). Investigation of the effect of lead adsorption on surface modified fish bones. Acta Natura et Scientia, 1(1), 56–60. https://doi.org/10.29329/actanatsci.2020.313.7 CR - Kızılkaya, B., Ormancı, H. B., Öztekin, A., Tan, E., Ucyol, N., Türker, G., Tekinay, A. A., & Bilici, A. (2015). An application on fish bones by chemical modification of histidine as amino acid. Marine Science and Technology Bulletin, 4(1), 19–23. CR - Kizilkaya, B., Tan, E., Bahçeci, D., Ormanci, H. B., & Oztekin, A., (2018). An investigation on the conversion of functional materials of fish bones as waste products using surface modification methods. Indian Journal of Biotechnology, 17(1), 57-64. CR - Kizilkaya, B., Tekinay, A. A., & Dilgin, Y. (2010). Adsorption and removal of Cu (II) ions from aqueous solution using pretreated fish bones. Desalination, 264(1–2), 37–47. https://doi.org/10.1016/j.desal.2010.06.076 CR - Liaqat, S., Ahmed, Z., Umer, M. U., Ali, Q., Mustafa, M. F., Ferheen, I., & Waseem, M. (2024). Sheep bone valorization: Enhancing gastronomic sustainability through hydroxyapatite-enriched potato wedges. International Journal of Gastronomy and Food Science, 35, 100841. https://doi.org/10.1016/j.ijgfs.2023.100841 CR - Lingaitiene, O., & Burinskiene, A. (2024). Development of trade in recyclable raw materials: Transition to a circular economy. Economies, 12(2), 48. https://doi.org/10.3390/economies12020048 CR - Minunno, R., O'Grady, T., Morrison, G. M., & Gruner, R. L. (2020). Exploring environmental benefits of reuse and recycle practices: A circular economy case study of a modular building. Resources, Conservation and Recycling, 160, 104855. https://doi.org/10.1016/j.resconrec.2020.104855 CR - Mohammadi-Jam, S., Greenwood, R. W., & Waters, K. E. (2025). An overview of the temperature dependence of the zeta potential of aqueous suspensions. Results in Engineering, 27, 105698. https://doi.org/10.1016/j.rineng.2025.105698 CR - Mondal, S., Park, S., Choi, J., Vu, T. T. H., Doan, V. H. M., Vo, T. T., Lee, B., & Oh, J. (2023). Hydroxyapatite: A journey from biomaterials to advanced functional materials. Advances in Colloid and Interface Science, 321, 103013. https://doi.org/10.1016/j.cis.2023.103013 CR - Németh, Z., Csóka, I., Semnani Jazani, R., Sipos, B., Haspel, H., Kozma, G., Kónya, Z., & Dobó, D. G. (2022). Quality by design-driven zeta potential optimisation study of liposomes with charge imparting membrane additives. Pharmaceutics, 14(9), 1798. https://doi.org/10.3390/pharmaceutics14091798 CR - Oliveira Neto, G. C. de, Correia, A. de J. C., & Schroeder, A. M. (2017). Economic and environmental assessment of recycling and reuse of electronic waste: Multiple case studies in Brazil and Switzerland. Resources, Conservation and Recycling, 127, 42–55. https://doi.org/10.1016/j.resconrec.2017.08.011 CR - Qamhieh, K. (2024). Effect of dielectric constant on the zeta potential of spherical electric double layers. Molecules, 29(11), 2484. https://doi.org/10.3390/molecules29112484 CR - Rosa, N., Moura, M. F. S. F., Olhero, S., Simoes, R., Magalhães, F. D., Marques, A. T., Ferreira, J. P. S., Reis, A. R., Carvalho, M., & Parente, M. (2022). Bone: An outstanding composite material. Applied Sciences, 12(7), 3381. https://doi.org/10.3390/app12073381 CR - Serrano-Lotina, A., Portela, R., Baeza, P., Alcolea-Rodriguez, V., Villarroel, M., & Ávila, P. (2023). Zeta potential as a tool for functional materials development. Catalysis Today, 423, 113862. https://doi.org/10.1016/j.cattod.2022.08.004 CR - Shi, H., Zhou, Z., Li, W., Fan, Y., Li, Z., & Wei, J. (2021). Hydroxyapatite based materials for bone tissue engineering: A brief and comprehensive introduction. Crystals, 11(2), 149. https://doi.org/10.3390/cryst11020149 CR - Siddiqua, A., Hahladakis, J. N., & Al-Attiya, W. A. K. A. (2022). An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environmental Science and Pollution Research, 29(43), 58514–58536. https://doi.org/10.1007/s11356-022-21578-z CR - Skwarek, E., Bolbukh, Y., Tertykh, V., et al. (2016). Electrokinetic properties of the pristine and oxidized MWCNT depending on the electrolyte type and concentration. Nanoscale Research Letters, 11, 166. https://doi.org/10.1186/s11671-016-1367-z CR - Šromová, V., Sobola, D., & Kaspar, P. (2023). A brief review of bone cell function and importance. Cells, 12(21), 2576. https://doi.org/10.3390/cells12212576 CR - Suparmaniam, U., Shaik, N. B., Lam, M. K., Lim, J. W., Uemura, Y., Shuit, S. H., Show, P. L., Tan, I. S., & Lee, K. T. (2022). Valorization of fish bone waste as novel bioflocculant for rapid microalgae harvesting: Experimental evaluation and modelling using back propagation artificial neural network. Journal of Water Process Engineering, 47, 102808. https://doi.org/10.1016/j.jwpe.2022.102808 CR - Tan, E., & Kızılkaya, B. (2021). Fuchsine dye adsorption of surface modified biogenic apatite with tryptophan and histidine. Acta Natura et Scientia, 2(1), 49–52. https://doi.org/10.29329/actanatsci.2021.314.8 CR - Ulian, G., Moro, D., & Valdrè, G. (2021). Hydroxylapatite and related minerals in bone and dental tissues: Structural, spectroscopic and mechanical properties from a computational perspective. Biomolecules, 11(5), 728. https://doi.org/10.3390/biom11050728 CR - Villarrubia-Gómez, P., Almroth, B. C., Eriksen, M., Ryberg, M., & Cornell, S. E. (2024). Plastics pollution exacerbates the impacts of all planetary boundaries. One Earth, 7(12), 2119–2138. https://doi.org/10.1016/j.oneear.2024.10.017 UR - https://doi.org/10.33714/masteb.1738887 L1 - https://dergipark.org.tr/en/download/article-file/5040089 ER -