TY - JOUR T1 - Roketlerde kanat geometrisinin statik stabiliteye etkilerinin sayısal olarak incelenmesi TT - Numerical investigation of the effects of wing geometry on static stability in rockets AU - Çelik, Polat AU - Sabancı, Mehmet AU - Sarpkaya, Hasan AU - Çoban, Sezer PY - 2025 DA - August Y2 - 2025 DO - 10.52995/jass.1744172 JF - Havacılık ve Uzay Çalışmaları Dergisi JO - JASS PB - University of Turkish Aeronautical Association WT - DergiPark SN - 2757-7317 SP - 123 EP - 132 VL - 5 IS - 2 LA - tr AB - Bu çalışmada, roket sistemlerinde kullanılan farklı kanatçık geometrilerinin statik kararlılık üzerindeki etkisi sayısal analiz yoluyla araştırılmıştır. Roket sistemlerinde aerodinamik kararlılığın sağlanması, özellikle yüksek hızlı uçuş sırasında sapma ve kararsızlığın önlenmesi için büyük önem taşımaktadır. Bu bağlamda, ileri süpürülmüş delta, ileri süpürülmüş delta, eliptik ve trapez olmak üzere dört farklı kanatçık geometrisi hem OpenRocket simülasyonları hem de ANSYS Fluent tabanlı Hesaplamalı Akışkanlar Dinamiği analizi kullanılarak değerlendirilmiştir. OpenRocket, roketin basınç merkezini (CP) ve kütle merkezini (CG) belirlemiş ve statik marjları hesaplamıştır. Her kanatçık tipi için kaldırma kuvveti, sürükleme kuvveti ve moment değerleri HAD analizi yoluyla elde edilmiştir. Ayrıca, elde edilen veriler MATLAB'da oluşturulan bir uçuş dinamiği modeline beslenerek zamanla değişen yönelimleri analiz edilmiştir. Sonuçlar, eliptik kanatçıkların minimum sürükleme katsayılarıyla en verimli çözümü sunduğunu, ileri süpürülmüş delta kanatların ise irtifa ve kaldırma performansı açısından üstün olduğunu göstermiştir. Çalışmanın sonuçları, roket tasarım sürecinde stabilizatörlerin optimum seçimi için mühendislik tabanlı öneriler sunmaktadır. KW - Roket aerodinamiği KW - kanat geometrisi KW - statik marj KW - HAD KW - OpenRocket N2 - In this study, the effects of different fin geometries used in rocket systems on static stability were investigated through numerical analysis. Ensuring aerodynamic stability in rocket systems is crucial for preventing yaw and instability, especially during high-speed flight. In this context, four different fin geometries—forward-swept delta, forward-swept delta, elliptical, and trapezoidal—were evaluated using both OpenRocket simulations and ANSYS Fluent-based Computational Fluid Dynamics (CFD) analysis. OpenRocket determined the rocket's Center of Pressure (CP) and center of mass (CG) and calculated the static margins. Lift, drag, and moment values for each fin type were obtained through CFD analysis. Furthermore, the obtained data were fed into a flight dynamics model created in MATLAB to analyze their time-varying orientations. The results showed that elliptical fins offer the most efficient solution with minimum drag coefficients, while forward-swept delta wings are superior in terms of altitude and lift performance. The results of the study provide engineering-based recommendations for the optimum selection of stabilizers in the rocket design process. CR - Abzug, M. J., & Larrabee, E. E. (2002). Airplane Stability and Control: A History of the Technologies That Made Aviation Possible. Cambridge University Press. CR - Anderson, J. D. (2010). Fundamentals of Aerodynamics (5th ed.). McGraw-Hill Education. CR - ANSYS, Inc. (2020). ANSYS Fluent Theory Guide. ANSYS, Inc., Canonsburg. CR - Barnard, R. H., & Philpott, D. R. (2010). Aircraft Flight: A Description of the Physical Principles of Aircraft Flight. Pearson Education. CR - Barokah, A. D. N., ... & Hoa, N. L. (2024). A comparative analysis of the aerodynamic performance: Straight fin and curved fin rockets using Computational Fluid Dynamics (CFD). Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 115(1), 1-18. https://doi.org/10.37934/arfmts.115.1.118 CR - Bordachev, V. A. (2023). Static stability study of a model rocket. Siberian Aerospace Journal, 24(1), 64-75. doi: 10.31772/10.31772/2712-8970-2023-24-1-64-75 CR - Boumrar, I., & Djebali, R. (2019). Experimental validation of pressure distribution prediction under delta wing apex vortex at high Reynolds numbers. CFD Letters, 11(3), 92-102. https://akademiabaru.com/submit/index.php/cfdl/article/view/3146/2180 CR - Cesnik, C. E. S., Hodges, D. H., & Patil, M. J. (1996). Aeroelastic analysis of composite wings. AIAA Meeting Papers on Disc, 1996, 1113-1123. https://doi.org/10.2514/6.1996-1444 CR - Faery, H. F. Jr., Strozier, J. K., & Ham, J. A. (1981). Experimental and theoretical study of three interacting, closely-spaced, sharp-edged 60 deg delta wings at low speeds. NASA Contractor Report 3460. https://ntrs.nasa.gov/api/citations/19810024617/downloads/19810024617.pdf CR - Fortescue, P., Swinerd, G., & Stark, J. (2011). Spacecraft Systems Engineering. John Wiley & Sons. https://doi.org/10.1002/9781119971009 CR - Huang, D. H., & Huzel, D. K. (1992). Modern Engineering for Design of Liquid-Propellant Rocket Engines. American Institute of Aeronautics and Astronautics, Inc. https://doi.org/10.2514/4.866197 CR - Mahmood, C. A., & Das, R. K. (2019). Performance comparison of different winglets by CFD. AIP Conference Proceedings, 2121, 060006. https://doi.org/10.1063/1.5115907 CR - NASA Glenn Research Center (t.y.-a). Rocket Center of Pressure. https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/rocket-center-of-pressure/ sayfasından alınmıştır. CR - NASA Glenn Research Center (t.y.-b). Rocket Stability. https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/rocket-stability/ sayfasından alınmıştır. CR - OpenRocket (2023). [Computer software]. http://openrocket.info/ CR - Rahman, H., Khushnood, S., Raza, A., & Ahmad, K. (2013). Experimental and computational investigation of delta wing aerodynamics. In: Proceedings of 2013 10th International Bhurban Conference on Applied Sciences & Technology (IBCAST), Islamabad, Pakistan, 2013, 203-208. doi:10.1109/IBCAST.2013.6512155 CR - Roberts, D. W. (2006). The Aerodynamic Analysis and Aeroelastic Tailoring of a Forward-Swept Wing. North Carolina State University. https://repository.lib.ncsu.edu/server/api/core/bitstreams/813d5ee5-3211-4485-b2da-503a7ff54fc2/content CR - Ruffles, W., & Dakka, S. M. (2016). Aerodynamic flow characteristics of utilizing delta wing configurations in supersonic and subsonic flight regimes. Journal of Communication and Computer, 13, 299-318. doi:10.17265/1548-7709/2016.06.004 CR - Sadraey, M. H. (2012). Aircraft Design: A Systems Engineering Approach. John Wiley & Sons. doi:10.1002/9781118352700 CR - Sutton, G. P., & Biblarz, O. (2016). Rocket Propulsion Elements. Wiley. CR - Wibowo, S. B., Sutrisno, S., & Rohmat, T. A. (2018). An evaluation of turbulence model for vortexbreakdown detection over delta wing. Archive of Mechanical Engineering, 65(3), 399 – 415. https://doi.org/10.24425/124489 UR - https://doi.org/10.52995/jass.1744172 L1 - https://dergipark.org.tr/en/download/article-file/5062183 ER -