TY - JOUR T1 - The Effects of Taurine on Energy Homeostasis and Health: A Nutritional Perspective TT - Taurinin Enerji Homeostazi ve Sağlık Üzerindeki Etkileri: Beslenme Perspektifi AU - Dağoğlu Polat, İrem AU - Baran, Özlem PY - 2025 DA - August Y2 - 2025 DO - 10.25048/tudod.1744454 JF - Turkish Journal of Diabetes and Obesity JO - Turk J Diab Obes PB - Zonguldak Bulent Ecevit University WT - DergiPark SN - 2587-0335 SP - 136 EP - 146 VL - 9 IS - 2 LA - en AB - Taurine is a sulfur-containing β-amino acid that structurally differs from standard amino acids. It is found in high concentrationsacross various tissues of the human body and plays a role in numerous physiological processes, including antioxidant defense, energyregulation, and modulation of the central nervous system. Globally increasing obesity is accompanied by serious health problems suchas metabolic syndrome, insulin resistance, dyslipidemia, and hyperglycemia. While traditional approaches have regarded adipose tissueas a passive structure solely involved in lipid storage, it is now recognized as an active endocrine organ. In this context, the biologicallyactive molecules secreted by adipocytes and their roles in metabolic processes are critically important in the pathogenesis of obesity.The primary aim of this review article is to systematically evaluate the functional effects of taurine in adipose tissue and the mechanismsby which it counteracts obesity. Taurine possesses a structure that distinguishes it from typical amino acids and is present in highconcentrations in the body, contributing to various biological functions such as reducing oxidative stress, suppressing inflammation,and regulating energy metabolism. Studies in animal models have demonstrated that taurine supplementation reduces inflammationin adipose tissue, increases lipolysis, activates thermogenic pathways, and suppresses appetite via central nervous system mechanisms, thereby preventing the development of obesity. Moreover, findings of low plasma taurine levels in individuals living with obesity anddiabetes suggest that taurine deficiency may disrupt metabolic balance. Although animal and epidemiological studies indicate thattaurine is promising for alleviating metabolic disorders, further advanced research is necessary to fully elucidate its mechanisms andconfirm its efficacy in humans KW - Adipose Tissue KW - Obesity KW - Taurine N2 - Taurin, standart amino asitlerden yapısal olarak farklılık gösteren, sülfür içeren bir β-amino asittir. İnsan vücudunun çeşitli dokularındayüksek konsantrasyonlarda bulunur ve antioksidan savunma, enerji regülasyonu ve merkezi sinir sisteminin düzenlenmesi gibi çoksayıda fizyolojik süreçte rol alır. Küresel olarak artan obeziteye metabolik sendrom, insülin direnci, dislipidemi ve hiperglisemi gibiciddi sağlık sorunları eşlik etmektedir. Geleneksel yaklaşımlar yağ dokusunu sadece lipid depolamada rol alan pasif bir yapı olarakgörürken, artık aktif bir endokrin organ olarak kabul edilmektedir. Bu bağlamda, adipositler tarafından salgılanan biyolojik olarak aktifmoleküller ve bunların metabolik süreçlerdeki rolleri obezitenin patogenezinde kritik öneme sahiptir. Bu derleme makalesinin temelamacı, taurinin adipoz dokudaki fonksiyonel etkilerini ve obeziteye karşı koyma mekanizmalarını sistematik olarak değerlendirmektir.Taurin, onu tipik amino asitlerden ayıran bir yapıya sahiptir ve vücutta yüksek konsantrasyonlarda bulunur, oksidatif stresi azaltmak,inflamasyonu bastırmak ve enerji metabolizmasını düzenlemek gibi çeşitli biyolojik işlevlere katkıda bulunur. Hayvan modellerindeyapılan çalışmalar, taurin takviyesinin yağ dokusundaki enflamasyonu azalttığını, lipolizi artırdığını, termojenik yolları aktive ettiğini vemerkezi sinir sistemi mekanizmaları yoluyla iştahı baskıladığını ve böylece obezite gelişimini önlediğini göstermiştir. Ayrıca, obezite vediyabetle yaşayan bireylerde düşük plazma taurin düzeylerinin saptanması, taurin eksikliğinin metabolik dengeyi bozabileceğine işaretetmektedir. Her ne kadar hayvan ve epidemiyolojik çalışmalar taurinin metabolik bozuklukları hafifletmek için umut verici olduğunugösterse de, mekanizmalarını tam olarak aydınlatmak ve insanlardaki etkinliğini doğrulamak için daha ileri araştırmalara ihtiyaç vardır. CR - 1. Murakami S, Yamori Y. Taurine and longevity—preventive effect of taurine on metabolic syndrome. In: Watson RR, Preedy VR, eds. Bioactive Food as Dietary Interventions for the Aging Population. San Diego, CA: Academic Press; 2013:159-171. CR - 2. De Carvalho FG, Munoz VR, Brandao CF, Simabuco FM, Pavan IC, Nakandakari S C, de Freitas EC. Taurine upregulates insulin signaling and mitochondrial metabolism in vitro but not in adipocytes of obese women. Nutrition. 2022; 93, 111430. CR - 3. Myers MG Jr, Leibel RL, Seeley RJ, Schwartz MW. Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol Metab. 2010;21(11):643-651. CR - 4. Shklyaev SS, Melnichenko GA, Volevodz NN, et al. Adiponectin: a pleiotropic hormone with multifaceted roles. Probl Endokrinol (Mosk). 2021;67(6):98-112. CR - 5. Devanoorkar A, Kathariya R, Guttiganur N, Gopalakrishnan D, Bagchi P. Resistin: a potential biomarker for periodontitis influenced diabetes mellitus and diabetes induced periodontitis. Dis Markers. 2014;2014:930206. doi:10.1155/2014/930206 CR - 6. Kirichenko TV, Markina YV, Bogatyreva AI, Tolstik TV, Varaeva YR, Starodubova AV. The role of adipokines in inflammatory mechanisms of obesity. Int J Mol Sci.2022; 23(23), 14982. CR - 7. Murakami, S. The physiological and pathophysiological roles of taurine in adipose tissue in relation to obesity. Life Sci.2017; 186, 80–86. CR - 8. Ahmed K, Choi HN, Yim JE. The impact of taurine on obesity- induced diabetes mellitus: mechanisms underlying its effect. Endocrinology and Metabolism. 2023; 38(5), 482-492. CR - 9. Tiedemann F, Gmelin L. Versuche über die Wege, auf welchen Substanzen aus dem Magen und Darm in das Blut gelangen. Heidelberg, Germany: Akademische Buchhandlung; 1827. CR - 10. Ripps H, Shen, W. taurine: a “very essential” amino acid. Mol Vis. 2012; 18, 2673-2686. CR - 11. Rais N, Ved A, Shadab M, Ahmad R, Shahid M. Taurine, a non-proteinous essential amino acid for human body systems: an overview. Arab Gulf J Sci Res. 2023; 41(1), 48-66. CR - 12. Liu CL, Watson AM, Place AR, Jagus, R. Taurine biosynthesis in a fish liver cell line (ZFL) adapted to a serum-free medium. Marine Drugs. 2017; 15(6), 147. CR - 13. Duan H, Song W, Guo J, Yan W. Taurine: A Source and Application for the Relief of Visual Fatigue. Nutrients. 2023;15(8):1843. Published 2023 Apr 12. doi:10.3390/ nu15081843 CR - 14. Park E, Park SY, Dobkin C, Schuller-Levis G. Development of a novel cysteine sulfinic acid decarboxylase knockout mouse: dietary taurine reduces neonatal mortality. J Amino Acids. 2014; 346809. CR - 15. Dinçer S, Karakelle NA. Role of taurine in the central nervous system and importance of dosage. Gazi Med J. 2019;30(2):227- 230. CR - 16. Almohaimeed HM, Almars AI, Alsulaimani F, Basri AM, Althobaiti NA, Albalaw AE, Alsharif I, Abdulmonem WA, Hershan AA, Soliman MH. Investigating the potential neuroprotective benefits of taurine and Dihydrotestosterone and Hydroxyprogesterone levels in SH-SY5Y cells. Front Aging Neurosci. 2024; 16, 1379431. CR - 17. Granum B, Bruzell EM, Hetland RB, Husøy T, Rohloff J, Wicklund T, Steffensen IL. Risk assessment of “other substances”— taurine. Opinion of the Panel on Food Additives, Flavourings, Processing Aids, Materials in Contact with Food and Cosmetics of the Norwegian Scientific Committee for Food Safety. VKM Report. 2015:22. CR - 18. Ozan G, Türközkan N, Bircan FS, Balabanlı B. Effect of taurine on brain energy status and malondialdehyde levels in endotoxemia model. Bozok Med J. 2018;8(1):11-17. CR - 19. Sarışık DÇ, Andre H, Tortu E, Deliceoğlu G. Effect of high doses of taurine ingestion on time to exhaustion running performance. Akdeniz Spor Bilim Derg. 2023;6(2):436-445. CR - 20. Baliou S, Adamaki M, Ioannou P, Pappa A, Panayiotidis MI, Spandidos DA, Christodoulou I, Kyriakopoulos AM, Zoumpourlis V. Protective role of taurine against oxidative stress (Review). Mol Med Rep. 2021; 24(2):605. CR - 21. Surai PF, Earle-Payne K, Kidd MT. Taurine as a Natural Antioxidant: From Direct Antioxidant Effects to Protective Action in Various Toxicological Models. Antioxidants, 2021; 10(12), 1876. CR - 22. Chen C, Xia S, He J, Lu G, Xie Z, Han H. Roles of taurine in cognitive function of physiology, pathologies and toxication. Life Sciences. 2019; 231, 116584. CR - 23. Yüce H, Türkmen NB, Özek DA, Ünüvar S. Investigation of antiproliferative, antimigration, and antioxidant effects of taurine, capsaicin, melatonin, and beta-carotene on L929 healthy cells and MCF-7 breast cancer cells. J Fac Pharm Ankara. 2022;46(1):48-61. CR - 24. Karafakıoğlu YS. Antioksidanlar ve Bir Antioksidan Olarak Taurin. kvj. Mart 2010;3(1):55-61. CR - 25. Merckx C, Paepe BD. The Role of Taurine in Skeletal Muscle Functioning and Its Potential as a Supportive Treatment for Duchenne Muscular Dystrophy. Metabolites. 2022; 12(2), 193. CR - 26. De Luca A, Pierno S, Camerino DC. Taurine: the appeal of a safe amino acid for skeletal muscle disorders. J Transl Med. 2015;13:243. Published 2015 Jul 25. doi:10.1186/s12967-015- 0610-1 CR - 27. Torlak-Koca N, Çelik TÖ. Beneficial effects of taurine treatment on experimental myositis in rats. J Kirikkale Univ Fac Med. 2023;25(3):531-540. CR - 28. Tzang CC, Lin WC, Lin LH, Lin TY, Chang KV, Wu WT, Özçakar L. Insights into the cardiovascular benefits of taurine: a systematic review and meta-analysis. Nut J. 2024; 23(1), 93. CR - 29. Tuzcu Z, Gençoğlu H, Tuzcu M, Orhan C, Ağca CA, Şahin K. Effect of taurine on cardiac tissue antioxidant levels and NF- κB and Nrf2 signaling pathways in diabetic rats. Firat Univ Saglik Bilimleri Vet Derg. 2018;32(2):xx-xx. CR - 30. Demircioğlu Rİ, Usta B, Sert H, Muslu B, Gözdemir M. Taurine is protective against oxidative stress during cold ischemia in the rat kidney. Turk J Med Sci. 2011;41(5):843-849. CR - 31. Shimada K, Jong CJ, Takahashi K, Schaffer SW. Role of ROS production and turnover in the antioxidant activity of taurine. Adv Exp Med Biol. 2015; 803;581-596. CR - 32. Schaffer S, Kim HW. Effects and mechanisms of taurine as a therapeutic agent. Biomol Ther. 2018; 26(3), 225-241. CR - 33. Ito T, Miyazaki N, Schaffer S, Azuma J. Potential anti-aging role of taurine via proper protein folding: a study from taurine transporter knockout mouse. Adv Exp Med Biol, 2015; (803), 481-487 CR - 34. Ahmed K, Choi HN, Park JS, Kim YG, Bae MK, Yim JE.Taurine supplementation alters gene expression profiles in white adipose tissue of obese C57BL/6J mice: Inflammation and lipid synthesis perspectives. Heliyon. 2024; 10(1), e23288. CR - 35. Murakami S. Role of taurine in the pathogenesis of obesity. Mol Nutr Food Res. 2015;59(7):1353-1363. doi:10.1002/ mnfr.201500067 CR - 36. Alimohamadi H, Bell MK, Halpain S, Rangamani P. Mechanical Principles Governing the Shapes of Dendritic Spines. Front Physiol. 2021;12:657074. Published 2021 Jun 16. doi:10.3389/ fphys.2021.657074 CR - 37. Bae M, Ahmed, K, Yim JE. Beneficial effects of taurine on metabolic parameters in animals and humans. J Obes Metab Syndr. 2022; 31(2), 134-146. CR - 38. Kim KS, Jang MJ, Fang S, Yoon SG, Kim IY, Seong JK, Yang HI, Hahm DH. Anti‐obesity effect of taurine through inhibition of adipogenesis in white fat tissue but not in brown fat tissue in a high‐fat diet‐induced obese mouse model. Amino Acids. 2019; 51(2), 245–254. CR - 39. Kim SH, Yum HW, Kim SH, Kim W, Kim SJ, Kim C, Surh, YJ. Protective effects of taurine chloramine on experimentally induced colitis: NFκB, STAT3, and Nrf2 as potential targets. Antioxidants. 2021; 10(3), 479. CR - 40. Nardelli TR, Ribeiro RA, Balbo SL, et al. Taurine prevents fat deposition and ameliorates plasma lipid profile in monosodium glutamate-obese rats. Amino Acids. 2011;41(4):901-908. doi:10.1007/s00726-010-0789-7 CR - 41. Murakami S. The physiological and pathophysiological roles of taurine in adipose tissue in relation to obesity. Life Sci. 2017;186:80-86. doi:10.1016/j.lfs.2017.08.008 CR - 42. Lihn AS, Pedersen SB, Richelsen B. Adiponectin: action, regulation and association to insulin sensitivity. Obes Rev. 2005;6(1):13-21. doi:10.1111/j.1467-789X.2005.00159.x CR - 43. Ueki I, Stipanuk MH. 3T3-L1 adipocytes and rat adipose tissue have a high capacity for taurine synthesis by the cysteine dioxygenase/ cysteinesulfinate decarboxylase and cysteamine dioxygenase pathways. J Nutr. 2009;139(2):207-214. doi:10.3945/ jn.108.099085. CR - 44. Sagara M, Murakami S, Mizushima S, et al. Taurine in 24-h Urine Samples Is Inversely Related to Cardiovascular Risks of Middle Aged Subjects in 50 Populations of the World. Adv Exp Med Biol. 2015;803:623-636. doi:10.1007/978-3-319- 15126-7_50 CR - 45. Yamori Y, Taguchi T, Mori H, Mori M. Low cardiovascular risks in the middle aged males and females excreting greater 24-hour urinary taurine and magnesium in 41 WHO-CARDIAC study populations in the world. J Biomed Sci. 2010;17 Suppl 1(Suppl 1):S21. Published 2010 Aug 24. doi:10.1186/1423- 0127-17-S1-S21 CR - 46. Tzang CC, Chi LY, Lin LH, Lin TY, Chang KV, Wu WT, Özçakar L. Taurine reduces the risk for metabolic syndrome: a systematic review and meta-analysis of randomized controlled trials. Nutr Diabetes. 2024;14(1):29. CR - 47. De Carvalho FG, Batitucci G, Abud GF, de Freitas EC. Taurine and Exercise: Synergistic Effects on Adipose Tissue Metabolism and Inflammatory Process in Obesity. Adv Exp Med Biol. 2022; 1370, 279-289. CR - 48. Wang L, Xie Z, Wu M, Chen Y, Wang X, Li X, Liu F. The role of taurine through endoplasmic reticulum in physiology and pathology. Biochem Pharmacol. 2024; 116386. CR - 49. Heidari R, Ommati MM. Taurine and the mitochondrion: Applications in the pharmacotherapy of human diseases, Bentham Science. 2023; CR - 50. Xu X, Poulsen KL, Wu L, Liu S, Miyata T, Song Q, Wei Q, Zhao C, Lin C, Yang J. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduc Target Ther. 2022; 7(1), 287. CR - 51. Guo YY, Li BY, Pen, WQ, Guo L, Tang, QQ. Taurine-mediated browning of white adipose tissue is involved in its anti-obesity effect in mice. J Biol Chem. 2019; 294(41), 15014-15024. CR - 52. Jong CJ, Sandal P, Schaffer SW. The Role of Taurine in Mitochondria Health: More Than Just an Antioxidant. Molecules. 2021; 26(16),4913. CR - 53. Camargo RL, Batista TM, Ribeiro RA, Branco RC, Da Silva PM, Izumi C, Araujo TR, Greene LJ, Boschero AC, Carneiro EM. Taurine supplementation preserves hypothalamic leptin action in normal and protein-restricted mice fed on a high-fat diet. Amino Acids. 2015; 47(11), 2419-2435. CR - 54. FangY, Qin M, Zheng Q, Wang K, Han X, Yang Q, Sang X, Cao G. Role of Bile Acid Receptors in the Development and Function of Diabetic Nephropathy. Kidney Int Rep. 2024; 9(11), 3116-313. CR - 55. Holter MM, Chirikjian MK, Govani VN, Cummings BP. TGR5 Signaling in Hepatic Metabolic Health. Nutrients. 2020; 12(9), 2598. CR - 56. Choudhuri S, Klaassen CD. Molecular Regulation of Bile Acid Homeostasis. Drug Metab Dispos. 2022; 50(4), 425-455. CR - 57. Kp AD, Martin A. Recent insights into the molecular regulators and mechanisms of taurine to modulate lipid metabolism: a review. Crit Rev Food Sci Nutr. 2023; 63(23), 6005-6017. UR - https://doi.org/10.25048/tudod.1744454 L1 - https://dergipark.org.tr/en/download/article-file/5063441 ER -