TY - JOUR T1 - Chemotherapy-Induced Cellular Senescence: A Comprehensive Review of Clinical Methodologies and Treatment Outcomes TT - Kemoterapi ile İndüklenen Hücresel Senesens: Klinik Yöntemler ve Tedavi Sonuçlarının Kapsamlı Bir İncelemesi AU - Yağbasan, Fatma Özge AU - Şimay Demir, Yaprak Dilber AU - Ark, Mustafa PY - 2025 DA - September Y2 - 2025 DO - 10.18663/tjcl.1745156 JF - Turkish Journal of Clinics and Laboratory JO - TJCL PB - DNT Ortadoğu Yayıncılık A.Ş. WT - DergiPark SN - 2149-8296 SP - 653 EP - 664 VL - 16 IS - 3 LA - en AB - The phenomenon of cellular senescence, which inevitably occurs as a result of chemotherapy, which is the basis of today's cancer treatment, has been a subject of increasing interest in recent years. This article aims to methodologically examine how cellular senescence is induced by chemotherapeutic agents and how this condition is detected in patients who are receiving or have received treatment. How senescent cells induced by chemotherapy during cancer treatment are determined, which biomarkers are used to detect senescence, and the methods used to detect these markers are discussed. In addition, the effects of senescent cells on the tumor microenvironment and the important clinical outcomes that may occur in patients with treatment are examined. In conclusion, in this review, we aimed to examine the clinical importance of cellular senescence induced by chemotherapy in cancer patients, how it may affect the response to chemotherapy, the side effects and long-term clinical outcomes it may cause in patients and possible new treatment methods to prevent potential adverse consequences. KW - senescence KW - cancer KW - chemotherapy KW - biomarker KW - clinic KW - tumor N2 - Günümüz kanser tedavisinin temelini oluşturan kemoterapinin kaçınılmaz bir sonucu olarak ortaya çıkan hücresel senesens olgusu, son yıllarda artan bir ilgiyle araştırılmaktadır. Bu makalede, kemoterapötik ajanlar tarafından hücresel senesens'in nasıl indüklendiği ve bu durumun tedavi almakta olan ya da tedavi almış hastalarda nasıl tespit edildiği yöntemsel olarak incelenmiştir. Kanser tedavisi sırasında kemoterapiye bağlı olarak gelişen senesens hücrelerin nasıl belirlendiği, senesens'in tespitinde kullanılan biyobelirteçler ve bu belirteçleri saptamada kullanılan yöntemler tartışılmıştır. Ayrıca, senesens hücrelerin tümör mikroçevresi üzerindeki etkileri ve tedavi gören hastalarda ortaya çıkabilecek önemli klinik sonuçlar değerlendirilmiştir. Sonuç olarak, bu derlemede kemoterapiye bağlı olarak gelişen hücresel senesens'in kanser hastalarındaki klinik önemini, kemoterapiye yanıtı nasıl etkileyebileceğini, hastalarda oluşturabileceği yan etkiler ile uzun vadeli klinik sonuçlarını ve potansiyel olumsuz sonuçları önlemeye yönelik yeni tedavi yöntemlerini incelemeyi amaçladık. CR - Hayflick, L. and P.S. Moorhead, The serial cultivation of human diploid cell strains. Exp Cell Res, 1961. 25: p. 585-621. https://doi.org/10.1016/0014-4827(61)90192-6 CR - Ozdemir, A., et al., Senescent cells and SASP in cancer microenvironment: New approaches in cancer therapy. Adv Protein Chem Struct Biol, 2023. 133: p. 115-158. https://doi.org/10.1016/bs.apcsb.2022.10.002 CR - McHugh, D. and J. Gil, Senescence and aging: Causes, consequences, and therapeutic avenues. J Cell Biol, 2018. 217(1): p. 65-77. https://doi.org/10.1083/jcb.201708092 CR - Xiao, S., et al., Cellular senescence: a double-edged sword in cancer therapy. Front Oncol, 2023. 13: p. 1189015. https://doi.org/10.3389/fonc.2023.1189015 CR - Sucularli, C., et al., Temporal regulation of gene expression and pathways in chemotherapy-induced senescence in HeLa cervical cancer cell line. Biosystems, 2024. 237: p. 105140. https://doi.org/10.1016/j.biosystems.2024.105140 CR - Hiyama, E., et al., Telomerase activity in human breast tumors. J Natl Cancer Inst, 1996. 88(2): p. 116-22. https://doi.org/10.1093/jnci/88.2.116 CR - Sager, R., Senescence as a mode of tumor suppression. 1991. https://doi.org/10.1289/ehp.919359 CR - Rodriguez-Brenes, I.A., D. Wodarz, and N.L. Komarova, Quantifying replicative senescence as a tumor suppressor pathway and a target for cancer therapy. Scientific Reports, 2015. 5. https://doi.org/ARTN 1766010.1038/srep17660 CR - Gewirtz, D.A., S.E. Holt, and L.W. Elmore, Accelerated senescence: An emerging role in tumor cell response to chemotherapy and radiation. Biochemical Pharmacology, 2008. 76(8): p. 947-957. https://doi.org/10.1016/j.bcp.2008.06.024 CR - Coppe, J.P., et al., Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol, 2008. 6(12): p. 2853-68. https://doi.org/10.1371/journal.pbio.0060301 CR - Campisi, J., Aging, Cellular Senescence, and Cancer. Annual Review of Physiology, Vol 75, 2013. 75: p. 685-705. https://doi.org/10.1146/annurev-physiol-030212-183653 CR - Piskorz, W.M. and M. Cechowska-Pasko, Senescence of Tumor Cells in Anticancer Therapy-Beneficial and Detrimental Effects. Int J Mol Sci, 2022. 23(19). https://doi.org/10.3390/ijms231911082 CR - Simay, Y.D., et al., The connection between the cardiac glycoside-induced senescent cell morphology and Rho/Rho kinase pathway. Cytoskeleton, 2018. 75(11): p. 461-471. https://doi.org/10.1002/cm.21502 CR - Pacifico, F., et al., Therapy-Induced Senescence: Novel Approaches for Markers Identification. International Journal of Molecular Sciences, 2024. 25(15). https://doi.org/ARTN 844810.3390/ijms25158448 CR - Herranz, N. and J. Gil, Mechanisms and functions of cellular senescence. Journal of Clinical Investigation, 2018. 128(4): p. 1238-1246. https://doi.org/10.1172/Jci95148 CR - Sharpless, N.E. and C.J. Sherr, Forging a signature of in vivo senescence. Nat Rev Cancer, 2015. 15(7): p. 397-408. https://doi.org/10.1038/nrc3960 CR - Debacq-Chainiaux, F., et al., Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc, 2009. 4(12): p. 1798-806. https://doi.org/10.1038/nprot.2009.191 CR - Evangelou, K., et al., Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell, 2017. 16(1): p. 192-197. https://doi.org/10.1111/acel.12545 CR - Kurz, D.J., et al., Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci, 2000. 113 ( Pt 20): p. 3613-22. https://doi.org/10.1242/jcs.113.20.3613 CR - Wang, B. and M. Demaria, The Quest to Define and Target Cellular Senescence in Cancer. Cancer Res, 2021. 81(24): p. 6087-6089. https://doi.org/10.1158/0008-5472.CAN-21-2032 CR - Domen, A., et al., Cellular senescence in cancer: clinical detection and prognostic implications. J Exp Clin Cancer Res, 2022. 41(1): p. 360. https://doi.org/10.1186/s13046-022-02555-3 CR - Georgakopoulou, E.A., et al., Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging (Albany NY), 2013. 5(1): p. 37-50. https://doi.org/10.18632/aging.100527 CR - Dowson, J.H. and S.J. Harris, Quantitative studies of the autofluorescence derived from neuronal lipofuscin. J Microsc, 1981. 123(Pt 3): p. 249-58. https://doi.org/10.1111/j.1365-2818.1981.tb02469.x CR - Georgakopoulou, E.A., et al., Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging-Us, 2013. 5(1): p. 37-50. CR - Mirzayans, R., et al., Role of p16(INK4A) in Replicative Senescence and DNA Damage-Induced Premature Senescence in p53-Deficient Human Cells. Biochem Res Int, 2012. 2012: p. 951574. https://doi.org/10.1155/2012/951574 CR - Ruas, M. and G. Peters, The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta, 1998. 1378(2): p. F115-77. https://doi.org/10.1016/s0304-419x(98)00017-1 CR - Ovadya, Y. and V. Krizhanovsky, Senescent cells: SASPected drivers of age-related pathologies. Biogerontology, 2014. 15(6): p. 627-642. https://doi.org/10.1007/s10522-014-9529-9 CR - Giatromanolaki, A., et al., Immunohistochemical detection of senescence markers in human sarcomas. Pathol Res Pract, 2020. 216(2): p. 152800. https://doi.org/10.1016/j.prp.2019.152800 CR - Sorokina, A.G., et al., Correlations between biomarkers of senescent cell accumulation at the systemic, tissue and cellular levels in elderly patients. Experimental Gerontology, 2023. 177. https://doi.org/ARTN 11217610.1016/j.exger.2023.112176 CR - Pustavoitau, A., et al., Role of senescence marker p16INK4a measured in peripheral blood T-lymphocytes in predicting length of hospital stay after coronary artery bypass surgery in older adults. Experimental Gerontology, 2016. 74: p. 29-36. https://doi.org/10.1016/j.exger.2015.12.003 CR - Calio, A., et al., Cellular Senescence Markers p16INK4a and p21CIP1/WAF Are Predictors of Hodgkin Lymphoma Outcome. Clin Cancer Res, 2015. 21(22): p. 5164-72. https://doi.org/10.1158/1078-0432.CCR-15-0508 CR - Lawrence, I., et al., Correlations between age, functional status, and the senescence-associated proteins HMGB2 and p16. Geroscience, 2018. 40(2): p. 193-199. https://doi.org/10.1007/s11357-018-0015-1 CR - Engeland, K., Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death and Differentiation, 2018. 25(1): p. 114-132. https://doi.org/10.1038/cdd.2017.172 CR - Kreis, N.N., F. Louwen, and J. Yuan, The Multifaceted p21 (Cip1/Waf1/) in Cell Differentiation, Migration and Cancer Therapy. Cancers, 2019. 11(9). https://doi.org/ARTN 122010.3390/cancers11091220 CR - Mijit, M., et al., Role of p53 in the Regulation of Cellular Senescence. Biomolecules, 2020. 10(3). https://doi.org/ARTN 42010.3390/biom10030420 CR - Chang, B.D., et al., Effects of p21 on cellular gene expression:: Implications for carcinogenesis, senescence, and age-related diseases. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(8): p. 4291-4296. https://doi.org/DOI 10.1073/pnas.97.8.4291 CR - Engeland, K., Cell cycle regulation: p53-p21-RB signaling. Cell Death and Differentiation, 2022. 29(5): p. 946-960. https://doi.org/10.1038/s41418-022-00988-z CR - Al Bitar, S. and H. Gali-Muhtasib, The Role of the Cyclin Dependent Kinase Inhibitor p21 in Targeting Cancer: Molecular Mechanisms and Novel Therapeutics. Cancers, 2019. 11(10). https://doi.org/ARTN 147510.3390/cancers11101475 CR - Joel, R.H.t.P.A.L.O.L.J.J.C.S.P., DNA Damage Is Able to Induce Senescence in Tumor Cells in Vitro and in Vivo. Cancer Research, 2002. 62(6): p. 1876-1883. CR - Zhu, Y., et al., Sunitinib induces cellular senescence via p53/Dec1 activation in renal cell carcinoma cells. Cancer Sci, 2013. 104(8): p. 1052-61. https://doi.org/10.1111/cas.12176 CR - Gerdes, J., et al., Production of a Mouse Monoclonal-Antibody Reactive with a Human Nuclear Antigen Associated with Cell-Proliferation. International Journal of Cancer, 1983. 31(1): p. 13-20. https://doi.org/DOI 10.1002/ijc.2910310104 CR - Gerdes, J., et al., Cell-Cycle Analysis of a Cell Proliferation-Associated Human Nuclear Antigen Defined by the Monoclonal-Antibody Ki-67. Journal of Immunology, 1984. 133(4): p. 1710-1715. CR - Sun, X.M. and P.D. Kaufman, Ki-67: more than a proliferation marker. Chromosoma, 2018. 127(2): p. 175-186. https://doi.org/10.1007/s00412-018-0659-8 CR - Haugstetter, A.M., et al., Cellular senescence predicts treatment outcome in metastasised colorectal cancer. Br J Cancer, 2010. 103(4): p. 505-9. https://doi.org/10.1038/sj.bjc.6605784 CR - El-Sadoni, M., et al., A three-marker signature identifies senescence in human breast cancer exposed to neoadjuvant chemotherapy. Cancer Chemother Pharmacol, 2023. 91(4): p. 345-360. https://doi.org/10.1007/s00280-023-04523-w CR - Radspieler, M.M., et al., Lamin-B1 is a senescence-associated biomarker in clear-cell renal cell carcinoma. Oncology Letters, 2019. 18(3): p. 2654-2660. https://doi.org/10.3892/ol.2019.10593 CR - Freund, A., et al., Lamin B1 loss is a senescence-associated biomarker. Molecular Biology of the Cell, 2012. 23(11): p. 2066-2075. https://doi.org/10.1091/mbc.E11-10-0884 CR - Sanoff, H.K., et al., Effect of cytotoxic chemotherapy on markers of molecular age in patients with breast cancer. J Natl Cancer Inst, 2014. 106(4): p. dju057. https://doi.org/10.1093/jnci/dju057 CR - Everaerts, S., et al., The aging lung: tissue telomere shortening in health and disease. Respir Res, 2018. 19(1): p. 95. https://doi.org/10.1186/s12931-018-0794-z CR - Wiemann, S.U., et al., Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J, 2002. 16(9): p. 935-42. https://doi.org/10.1096/fj.01-0977com CR - Vera-Ramirez, L., et al., Transcriptional shift identifies a set of genes driving breast cancer chemoresistance. PLoS One, 2013. 8(1): p. e53983. https://doi.org/10.1371/journal.pone.0053983 CR - Zhang, J.W., et al., Fusobacterium nucleatum promotes esophageal squamous cell carcinoma progression and chemoresistance by enhancing the secretion of chemotherapy-induced senescence-associated secretory phenotype via activation of DNA damage response pathway. Gut Microbes, 2023. 15(1): p. 2197836. https://doi.org/10.1080/19490976.2023.2197836 CR - Aird, K.M. and R. Zhang, Detection of senescence-associated heterochromatin foci (SAHF). Methods Mol Biol, 2013. 965: p. 185-96. https://doi.org/10.1007/978-1-62703-239-1_12 CR - Saleh, T., et al., Expression of therapy-induced senescence markers in breast cancer samples upon incomplete response to neoadjuvant chemotherapy. Bioscience Reports, 2021. 41(5). https://doi.org/Artn Bsr2021007910.1042/Bsr20210079 CR - Carballo-Munoz, A., et al., Aging-related biomarkers in testicular cancer survivors after different oncologic treatments. Cancer Med, 2024. 13(18): p. e70200. https://doi.org/10.1002/cam4.70200 CR - Chaib, S., et al., The efficacy of chemotherapy is limited by intratumoral senescent cells expressing PD-L2. Nat Cancer, 2024. 5(3): p. 448-462. https://doi.org/10.1038/s43018-023-00712-x CR - Al Shboul, S., et al., NOXA expression is downregulated in human breast cancer undergoing incomplete pathological response and senescence after neoadjuvant chemotherapy. Sci Rep, 2023. 13(1): p. 15903. https://doi.org/10.1038/s41598-023-42994-2 CR - Domen, A., et al., Prognostic implications of cellular senescence in resected non-small cell lung cancer. Transl Lung Cancer Res, 2022. 11(8): p. 1526-1539. https://doi.org/10.21037/tlcr-22-192 CR - Tato-Costa, J., et al., Therapy-Induced Cellular Senescence Induces Epithelial-to-Mesenchymal Transition and Increases Invasiveness in Rectal Cancer. Clin Colorectal Cancer, 2016. 15(2): p. 170-178 e3. https://doi.org/10.1016/j.clcc.2015.09.003 CR - Sidi, R., et al., Induction of senescence markers after neo-adjuvant chemotherapy of malignant pleural mesothelioma and association with clinical outcome: an exploratory analysis. Eur J Cancer, 2011. 47(2): p. 326-32. https://doi.org/10.1016/j.ejca.2010.09.044 CR - Roberson, R.S., et al., Escape from therapy-induced accelerated cellular senescence in p53-null lung cancer cells and in human lung cancers. Cancer Res, 2005. 65(7): p. 2795-803. https://doi.org/10.1158/0008-5472.CAN-04-1270 CR - Saleh, T., et al., The Expression of the Senescence-Associated Biomarker Lamin B1 in Human Breast Cancer. Diagnostics (Basel), 2022. 12(3). https://doi.org/10.3390/diagnostics12030609 CR - Shachar, S.S., et al., Effects of Breast Cancer Adjuvant Chemotherapy Regimens on Expression of the Aging Biomarker, p16(INK4a). JNCI Cancer Spectr, 2020. 4(6): p. pkaa082. https://doi.org/10.1093/jncics/pkaa082 CR - Campisi, J., Senescent cells, tumor suppression, and organismal aging: Good citizens, bad neighbors. Cell, 2005. 120(4): p. 513-522. https://doi.org/DOI 10.1016/j.cell.2005.02.003 CR - Demir, Y.D.S., et al., The implication of ROCK 2 as a potential senotherapeutic target via the suppression of the harmful effects of the SASP: Do senescent cancer cells really engulf the other cells? Cellular Signalling, 2021. 84. https://doi.org/ARTN 11000710.1016/j.cellsig.2021.110007 CR - Coppé, J.P., et al., The Senescence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression. Annual Review of Pathology-Mechanisms of Disease, 2010. 5: p. 99-118. https://doi.org/10.1146/annurev-pathol-121808-102144 CR - Zingoni, A., et al., The senescence journey in cancer immunoediting. Molecular Cancer, 2024. 23(1). https://doi.org/ARTN 6810.1186/s12943-024-01973-5 CR - Xue, W., et al., Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature, 2007. 445(7128): p. 656-660. https://doi.org/10.1038/nature05529 CR - Qin, S.H., B.A. Schulte, and G.Y. Wang, Role of senescence induction in cancer treatment. World Journal of Clinical Oncology, 2018. 9(8): p. 180-187. https://doi.org/10.5306/wjco.v9.i8.180 CR - Roninson, I.B., Tumor cell senescence in cancer treatment. Cancer Research, 2003. 63(11): p. 2705-2715. CR - Kuilman, T. and D.S. Peeper, Senescence-messaging secretome: SMS-ing cellular stress. Nature Reviews Cancer, 2009. 9(2): p. 81-94. https://doi.org/10.1038/nrc2560 CR - Rodier, F. and J. Campisi, Four faces of cellular senescence. Journal of Cell Biology, 2011. 192(4): p. 547-556. https://doi.org/10.1083/jcb.201009094 CR - Demaria, M., et al., Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse. Cancer Discov, 2017. 7(2): p. 165-176. https://doi.org/10.1158/2159-8290.CD-16-0241 CR - Ohtani, N., The roles and mechanisms of senescence-associated secretory phenotype (SASP): can it be controlled by senolysis? Inflamm Regen, 2022. 42(1): p. 11. https://doi.org/10.1186/s41232-022-00197-8 CR - Milanovic, M., et al., Senescence-associated reprogramming promotes cancer stemness. Nature, 2018. 553(7686): p. 96-100. https://doi.org/10.1038/nature25167 CR - Vasto, S., et al., Inflammatory networks in ageing, age-related diseases and longevity. Mechanisms of Ageing and Development, 2007. 128(1): p. 83-91. https://doi.org/10.1016/j.mad.2006.11.015 CR - Wang, D.Z. and R.N. DuBois, Immunosuppression associated with chronic inflammation in the tumor microenvironment. Carcinogenesis, 2015. 36(10): p. 1085-1093. https://doi.org/10.1093/carcin/bgv123 CR - Freund, A., et al., Inflammatory networks during cellular senescence: causes and consequences. Trends in Molecular Medicine, 2010. 16(5): p. 238-246. https://doi.org/10.1016/j.molmed.2010.03.003 CR - Ruhland, M.K., et al., Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nature Communications, 2016. 7. https://doi.org/ARTN 1176210.1038/ncomms11762 CR - Ershler, W.B. and E.T. Keller, Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annual Review of Medicine, 2000. 51: p. 245-270. https://doi.org/DOI 10.1146/annurev.med.51.1.245 CR - Duy, C., et al., Chemotherapy Induces Senescence-Like Resilient Cells Capable of Initiating AML Recurrence. Cancer Discov, 2021. 11(6): p. 1542-1561. https://doi.org/10.1158/2159-8290.CD-20-1375 CR - Kasamatsu, T., et al., Sub-lethal doses of chemotherapeutic agents induce senescence in T cells and upregulation of PD-1 expression. Clin Exp Med, 2023. 23(6): p. 2695-2703. https://doi.org/10.1007/s10238-023-01034-z CR - Kasamatsu, T., Implications of Senescent T Cells for Cancer Immunotherapy. Cancers (Basel), 2023. 15(24). https://doi.org/10.3390/cancers15245835 CR - Krtolica, A., et al., Senescent fibroblasts promote epithelial cell growth and tumorigenesis: A link between cancer and aging. Proceedings of the National Academy of Sciences of the United States of America, 2001. 98(21): p. 12072-12077. https://doi.org/DOI 10.1073/pnas.211053698 CR - Ren, J.L., et al., Inflammatory signaling and cellular senescence. Cellular Signalling, 2009. 21(3): p. 378-383. https://doi.org/10.1016/j.cellsig.2008.10.011 CR - Burton, D.G.A. and A. Stolzing, Cellular senescence: Immunosurveillance and future immunotherapy. Ageing Research Reviews, 2018. 43: p. 17-25. https://doi.org/10.1016/j.arr.2018.02.001 CR - Rhinn, M., B. Ritschka, and W.M. Keyes, Cellular senescence in development, regeneration and disease. Development, 2019. 146(20). https://doi.org/ARTN dev15183710.1242/dev.151837 CR - Wiley, C.D., et al., Secretion of leukotrienes by senescent lung fibroblasts promotes pulmonary fibrosis. JCI Insight, 2019. 4(24). https://doi.org/10.1172/jci.insight.130056 CR - Chilosi, M., et al., Premature lung aging and cellular senescence in the pathogenesis of idiopathic pulmonary fibrosis and COPD/emphysema. Transl Res, 2013. 162(3): p. 156-73. https://doi.org/10.1016/j.trsl.2013.06.004 CR - Bhowmik, A., et al., Relation of sputum inflammatory markers to symptoms and lung function changes in COPD exacerbations. Thorax, 2000. 55(2): p. 114-20. https://doi.org/10.1136/thorax.55.2.114 CR - Aldonyte, R., et al., Circulating monocytes from healthy individuals and COPD patients. Respir Res, 2003. 4(1): p. 11. https://doi.org/10.1186/1465-9921-4-11 CR - Liu, R.M., Oxidative stress, plasminogen activator inhibitor 1, and lung fibrosis. Antioxid Redox Signal, 2008. 10(2): p. 303-19. https://doi.org/10.1089/ars.2007.1903 CR - Mehdizadeh, M., et al., The role of cellular senescence in cardiac disease: basic biology and clinical relevance. Nature Reviews Cardiology, 2022. 19(4): p. 250-264. https://doi.org/10.1038/s41569-021-00624-2 CR - Matsumoto, Y., et al., Reduced number and function of endothelial progenitor cells in patients with aortic valve stenosis: a novel concept for valvular endothelial cell repair. European Heart Journal, 2009. 30(3): p. 346-355. https://doi.org/10.1093/eurheartj/ehn501 CR - Windebank, A.J. and W.G. Grisold, Chemotherapy-induced neuropathy. Journal of the Peripheral Nervous System, 2008. 13(1): p. 27-46. https://doi.org/DOI 10.1111/j.1529-8027.2008.00156.x CR - Alsalem, M., et al., Targeting therapy-induced senescence as a novel strategy to combat chemotherapy-induced peripheral neuropathy. Support Care Cancer, 2024. 32(1): p. 85. https://doi.org/10.1007/s00520-023-08287-0 CR - Myrianthopoulos, V., et al., Senescence and senotherapeutics: a new field in cancer therapy. Pharmacol Ther, 2019. 193: p. 31-49. https://doi.org/10.1016/j.pharmthera.2018.08.006 CR - Wang, S., et al., Accelerated Aging in Cancer Survivors: Cellular Senescence, Frailty, and Possible Opportunities for Interventions. Int J Mol Sci, 2024. 25(6). https://doi.org/10.3390/ijms25063319 CR - Zhang, L., et al., Targeting cellular senescence with senotherapeutics: senolytics and senomorphics. Febs Journal, 2023. 290(5): p. 1362-1383. https://doi.org/10.1111/febs.16350 CR - Balducci, L., C. Falandry, and M. Silvio, Senotherapy, cancer, and aging. J Geriatr Oncol, 2024. 15(4): p. 101671. https://doi.org/10.1016/j.jgo.2023.101671 UR - https://doi.org/10.18663/tjcl.1745156 L1 - https://dergipark.org.tr/en/download/article-file/5066095 ER -