TY - JOUR T1 - The Effect of Iodine on Rocket (Eruca sativa L.) Plant Under Salt Stress AU - Ekinci, Melek AU - Dizkara, Hande AU - Yıldırım, Ertan PY - 2025 DA - September Y2 - 2025 DO - 10.56430/japro.1746259 JF - Journal of Agricultural Production JO - J Agri Pro PB - Gökhan ARSLAN WT - DergiPark SN - 2757-6620 SP - 148 EP - 156 VL - 6 IS - 3 LA - en AB - The main objective of this study was to investigate how iodine biofortification (potassium iodate (KIO3)) applied to rocket affects the physiological and biochemical responses of the plant under salt stress. Rocket (Eruca sativa L.) seeds were used as material and the applications were started when the seeds germinated and the plants had 2-3 leaves. 50 (T1) and 100 (T2) µM KIO3 applications were applied to the leaves of the plants by spraying and also by irrigation to the soil. Salt stress was applied by applying water prepared with 100 mM NaCl to the plant as irrigation from the soil. The effects of the applications on some plant morphological and physiological properties were investigated. In the study, salinity significantly reduced plant growth and development in rocket. Iodine application alleviated this damage and supported growth in rocket against salt stress. The plant height, stem diameter, leaf number and leaf area decreased by 29%, 27%, 22% and 56%, respectively, under salt stress, while iodine applications reduced this decrease. Electrical conductivity (EC) increased with salinity, while leaf water relative content (LRWC) decreased in rocket. This effect of salt was low in iodine application. Plant fresh weight, root fresh weight, plant dry weight and root dry weight decreased by 55%, 13%, 20% and 10% in the control group with salinity, and iodine application mitigated this decrease. The chlorophyll content, root fresh and dry weight of plants, especially those under salt stress, increased with iodine application. Hydrogen peroxide (H2O2), malondialdehyde (MDA), proline, sucrose and antioxidant enzyme activities, which increased with salinity, also increased with iodine application. Iodine supports plant development and is also effective in salt stress tolerance of rocket plants. KW - Biofortification KW - Iodine KW - Rocket KW - Salinity CR - Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez, J. A. (2017). Plant responses to salt stress: Adaptive mechanisms. Agronomy, 7(1), 18. https://doi.org/10.3390/agronomy7010018 CR - Agarwal, S., & Pandey, V. (2004). Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biologia Plantarum, 48, 555-560. https://doi.org/10.1023/B:BIOP.0000047152.07878.e7 CR - Akınoğlu, G., Kiremit, M. S., & Rakıcıoğlu, S. (2025). Exploring the potential of iodine in mitigating salinity stress: Effects on yield, physio-biochemical traits, and fruit quality of sweet pepper (Capsicum annuum L.). Journal of Crop Health, 77, 86. https://doi.org/10.1007/s10343-025-01152-6 CR - Ali, R. T., Ahmed, O. K., Abdel-Samie, N. S., & Yousef, R. S. (2024). The salinity impact on changes in some metabolites and some vital subcellular organelles in white maize. Discover Agriculture, 2, 31. https://doi.org/10.1007/s44279-024-00041-2 CR - Angelini, R., & Federico, R. (1989). Histochemical evidence of polyamine oxidation and generation of hydrogen- peroxide in the cell Wall. Journal of Plant Physiology, 135(2), 212-217. https://doi.org/10.1016/S0176-1617(89)80179-8 CR - Angelini, R., Manes, F., & Federico, R. (1990). Spatial and functional correlation between diamine-oxidase and peroxidase activities and their dependence upon de-etiolation and wounding in chick-pea. Planta, 182(1), 89-96. https://doi.org/10.1007/bf00239989 CR - Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64-77. https://doi.org/10.1016/j.plaphy.2020.08.042 CR - Ashraf, M., & Bashir, A. (2003). Salt stress induced changes in some organic metabolites and ionic relations in nodules and other plant parts of two crop legumes differing in salt tolerance. Flora-Morphology, Distribution, Functional Ecology of Plants, 198(6), 486-498. https://doi.org/10.1078/0367-2530-00121 CR - Ashraf, M., & Harris, P. J. C. (2005). Abiotic stresses: Plant resistance through breeding and molecular approaches. CRC Press. https://doi.org/10.1201/9781482293609 CR - Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216. https://doi.org/10.1016/j.envexpbot.2005.12.006 CR - Barillari, J., Canistro, D., Paolini, M., Ferroni, F., Pedulli, G. F., Iori, R., & Valgimigli, L. (2005). Direct antioxidant activity of purified glucoerucin, the dietary secondary metabolite contained in rocket (Eruca sativa Mill.) seeds and sprouts. Journal of Agricultural and Food Chemistry, 53(7), 2475-2482. https://doi.org/10.1021/jf047945a CR - Barlas, N. T., Irget, M. E., & Tepecik, M. (2011). Mineral content of the rocket plant (Eruca sativa). African Journal of Biotechnology, 10(64), 14080-14082. https://doi.org/10.5897/AJB11.2171 CR - Bates, L. S., Waldren, R. P. A., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060 CR - Blasco, B., Rios, J. J., Cervilla, L. M., Sánchez‐Rodrigez, E., Ruiz, J. M., & Romero, L. (2008). Iodine biofortification and antioxidant capacity of lettuce: potential benefits for cultivation and human health. Annals of Applied Biology, 152(3), 289-299. https://doi.org/10.1111/j.1744-7348.2008.00217.x CR - Chopra J., Kaur N., & Gupta A. K. (2000). Ontogenic changes in enzymes of carbon metabolism in relation to carbohydrate status in developing mungbean reproductive structures. Phytochemistry, 53(5), 539-548. https://doi.org/10.1016/s0031-9422(99)00545-2 CR - Çirka, M., Tunçtürk, R., Kulaz, H., & Tunçtürk, M. (2022). Effects of salt stress on some growth parameters and biochemical changes in bean (Phaseolus vulgaris L.). Acta Scientiarum Polonorum Hortorum Cultus, 21(3), 53-63. http://doi.org/10.24326/asphc.2022.3.5 CR - Dávila-Rangel, I. E., Leija-Martínez, P., Medrano-Macías, J., Fuentes-Lara, L. O., González-Morales, S., Juárez-Maldonado, A., & Benavides-Mendoza, A. (2019). Iodine biofortification of crops. In P. K. Jaiwal, A. K. Chhillar, D. Chaudhary & R. Jaiwal (Eds.), Nutritional quality improvement in plants (pp. 79-113). Springer. https://doi.org/10.1007/978-3-319-95354-0_4 CR - Dey, G., & Mukherjee, R. K. (1984). Iodine treatment of soybean and sunflower seeds for controlling deterioration. Field Crops Research, 9, 205-213. https://doi.org/10.1016/0378-4290(84)90026-1 CR - Eşiyok, D. (2012). Kışlık ve yazlık sebze yetiştiriciliği. Sidas Yayınları. (In Turkish) CR - Fuentes, J. E. G., Castellanos, B. F. H., Martínez, E. N. R., Ortiz, W. A. N., Mendoza, A. B., & Macías, J. M. (2022). Outcomes of foliar iodine application on growth, minerals and antioxidants in tomato plants under salt stress. Folia Horticulturae, 34(1), 27-37. https://doi.org/10.2478/fhort-2022-0003 CR - Gong, Y., Toivonen, P. M., Wiersma, P. A., Lu, C., & Lau, O. L. (2000). Effect of freezing on the activity of catalase in apple flesh tissue. Journal of Agricultural and Food Chemistry, 48(11), 5537-5542. https://doi.org/10.1021/jf990525e CR - Hasanuzzaman, M., Nahar, K., & Fujita, M. (2013). Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In P. Ahmad, M. Azooz & M. Prasad (Eds.), Ecophysiology and responses of plants under salt stress (pp. 25-87). Springer. https://doi.org/10.1007/978-1-4614-4747-4_2 CR - Hniličková, H., Hnilička, F., Martinkova, J., & Kraus, K. (2017). Effects of salt stress on water status, photosynthesis and chlorophyll fluorescence of rocket. Plant Soil Environment, 63(8), 362-367. https://doi.org/10.17221/398/2017-PSE CR - Hu, Y., & Schmidhalter, U. (2004). Limitation of salt stress to plant growth. In B. Hock & E. F. Elstner (Eds.), Plant toxicology (pp. 205-238). CRC Press. https://doi.org/10.1201/9780203023884 CR - Jesus, C. G., Silva, F. J., Camara, T. R., Silva, Ê. F., & Willadino, L. (2015). Production of rocket under salt stress in hydroponic systems. Horticultura Brasileira, 33(4), 493-497. https://doi.org/10.1590/S0102-053620150000400014 CR - Kalefetoğlu, T., & Ekmekci, Y. (2005). Bitkilerde kuraklık stresinin etkileri ve dayanıklılık mekanizmaları. Gazi University Journal of Science, 18(4), 723-740. (In Turkish) CR - Kaya, G. (2021). Germination, stomatal and physiological response of rocket (Eruca sativa L,) to salinity. Acta Scientiarum Polonorum Hortorum Cultus, 20(4), 135-144. https://doi.org/10.24326/asphc.2021.4.12 CR - Kiferle, C., Martinelli, M., Salzano, A. M., Gonzali, S., Beltrami, S., Salvadori, P. A., Hora, K., Holwerda, H. J., Scaloni, A., & Perata, P. (2021). Evidences for a nutritional role of iodine in plants. Frontiers in Plant Science, 12, 616868. https://doi.org/10.3389/fpls.2021.616868 CR - Läuchli, A., & Grattan, S. R. (2007). Plant growth and development under salinity stress. In M. A. Jenks, P. M. Hasegawa & S. M. Jain (Eds.), Advances in molecular breeding toward drought and salt tolerant crops (pp. 1-32). Springer. https://doi.org/10.1007/978-1-4020-5578-2_1 CR - Levitt, J. (1990). Stress interactions-back to the future. HortScience, 25(11), 1363-1365. https://doi.org/10.21273/HORTSCI.25.11.1363 CR - Leyva, R., Sánchez-Rodríguez, E., Ríos, J. J., Rubio-Wilhelmi, M. M., Romero, L., Ruiz, J. M., & Blasco, B. (2011). Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress. Plant Science, 181(2), 195-202. https://doi.org/10.1016/j.plantsci.2011.05.007 CR - Lichtenthaler, H. K., & Buschmann, C. (2001). Extraction of phtosynthetic tissues: Chlorophylls and carotenoids. Current Protocols in Food Analytical Chemistry, 1(1), F4.2.1-F4.2.6. https://doi.org/10.1002/0471142913.faf0402s01 CR - Medrano-Macías, J., Leija-Martínez, P., González-Morales, S., Juárez-Maldonado, A., & Benavides-Mendoza, A. (2016). Use of iodine to biofortify and promote growth and stress tolerance in crops. Frontiers in Plant Science, 7, 1146. https://doi.org/10.3389/fpls.2016.01146 CR - Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239-250. https://doi.org/10.1046/j.0016-8025.2001.00808.x CR - Munns, R., Guo, J., Passioura, J. B., & Cramer, G. R. (2000). Leaf water status controls day-time but not daily rates of leaf expansion in salt-treated barley. Functional Plant Biology, 27(10), 949-957. https://doi.org/10.1071/PP99193 CR - Mushtaq, Z., Faizan, S., & Gulzar, B. (2020). Salt stress, its impacts on plants and the strategies plants are employing against it: A review. Journal of Applied Biology and Biotechnology, 8(3), 81-91. https://doi.org/10.7324/JABB.2020.80315 CR - Najar, R., Aydi, S., Sassi-Aydi, S., Zarai, A., & Abdelly, C. (2019). Effect of salt stress on photosynthesis and chlorophyll fluorescence in Medicago truncatula. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 153(1), 88-97. https://doi.org/10.1080/11263504.2018.1461701 CR - Riyazuddin, R., Singh, K., Iqbal, N., Nisha, N., Rani, A., Kumar, M., Khatri, N., Siddiqui, M. H., Kim, S. T., Atilla, F., & Gupta, R. (2023). Iodine: An emerging biostimulant of growth and stress responses in plants. Plant and Soil, 486, 119-133. https://doi.org/10.1007/s11104-022-05750-5 CR - Rus, A. M., Estan, M. T., Gisbert, C., Garcia‐Sogo, B., Serrano, R., Caro, M., Moreno, V., & Bolarin, M. C. (2001). Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K+/Na+ selectivity under salt stress. Plant, Cell & Environment, 24(8), 875-880. https://doi.org/10.1046/j.1365-3040.2001.00719.x CR - Sahin, U., Ekinci, M., Ors, S., Turan, M., Yildiz, S., & Yildirim, E. (2018). Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Scientia Horticulturae, 240, 196-204. https://doi.org/10.1016/j.scienta.2018.06.016 CR - Serrano, R., Mulet, J. M., Rios, G., Marquez, J. A., De Larrinoa, I. F., Leube, M. P., Mendizabal, I., Pascual-Ahuir, A., Proft, M., Ros, R., & Montesinos, C. (1999). A glimpse of the mechanisms of ion homeostasis during salt stress. Journal of Experimental Botany, 50(Special_Issue), 1023-1036. https://doi.org/10.1093/jxb/50.Special_Issue.1023 CR - Shalaby, O. A. (2025). Iodine application induces the antioxidant defense system, alleviates salt stress, reduces nitrate content, and increases the nutritional value of lettuce plants. Functional Plant Biology, 52(6). https://doi.org/10.1071/fp24273 CR - Shams, M., Ekinci, M., Ors, S., Turan, M., Agar, G., Kul, R., & Yildirim, E. (2019). Nitric oxide mitigates salt stress effects of pepper seedlings by altering nutrient uptake, enzyme activity and osmolyte accumulation. Physiology and Molecular Biology of Plants, 25(5), 1149-1161. https://doi.org/10.1007/s12298-019-00692-2 CR - Shariatinia, F., Azari, A., Rahimi, A., Panahi, B., & Madahhosseini, S. (2021). Germination, growth, and yield of rocket populations show strong ecotypic variation under NaCl stress. Scientia Horticulturae, 278, 109841. https://doi.org/10.1016/j.scienta.2020.109841 CR - Sodaeizade, H., Jafarian, S., Mosleh Arani, A., Hakimzade, M. A., & Sohrabizadeh, Z. (2020). The effect of iodine on increasing drought tolerance of (Carthamus Tinctorius L.) in seed germination and early growth stage. Journal of Environmental Science Studies, 5(1), 2387-2393. CR - Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91(5), 503-527. https://doi.org/10.1093/aob/mcg058 CR - Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science, 151(1), 59-66. https://doi.org/10.1016/S0168-9452(99)00197-1 CR - Vural, H., Eşiyok, D., & Duman, İ. (2000). Kültür sebzeleri (sebze yetiştirme). Ege Üniversitesi Basımevi. (In Turkish) CR - Ye, Y., Tam, N. F. Y., Wong, Y. S., & Lu, C. Y. (2003). Growth and physiological responses of two mangrove species (Bruguiera gymnorrhiza and Kandelia candel) to waterlogging. Environmental and Experimental Botany, 49(3), 209-221. https://doi.org/10.1016/S0098-8472(02)00071-0 CR - Yordanova, R. Y., Christov, K. N., & Popova, L. P. (2004). Antioxidative enzymes in barley plants subjected to soil flooding. Environmental and Experimental Botany, 51(2), 93-101. https://doi.org/10.1016/S0098-8472(03)00063-7 CR - Zhu, J. K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. https://doi.org/10.1016/s1360-1385(00)01838-0 UR - https://doi.org/10.56430/japro.1746259 L1 - https://dergipark.org.tr/en/download/article-file/5070715 ER -