TY - JOUR T1 - Mathematical Modelling on Survival of Cryptococcus albidus in Fuji Apple Wounds for Biocontrol Applications TT - Elma Üzerindeki Yaralanmış Bölgelerde Cryptococcus albidus’un Canlı Kalma Oranının Matematiksel Modelleme ile Belirlenmesi AU - Çağrı Mehmetoğlu, Arzu AU - Türkoğlu, Serap AU - Zengin, Adem PY - 2025 DA - July Y2 - 2024 DO - 10.24323/akademik-gida.1746809 JF - Akademik Gıda JO - Akademik Gıda PB - Sidas Medya Ltd. Şti. WT - DergiPark SN - 1304-7582 SP - 111 EP - 119 VL - 23 IS - 2 LA - en AB - In this study, the method of Artificial Neural Networks (ANN) was used to model the survival ability of Cryptococcus albidus SAS157 as a biocontrol agent against mold spoilage on Fuji apple fruit. C. albidus (6, 9, or 11 log CFU/mL) and P. expansum (6 log CFU/mL) were inoculated the punctured holes on the surface of the apples and stored at various temperatures (4, 10, 15, and 25°C) and relative humidity (RH) levels (85% or 95%) for 14 days. C. albidus survived the best in apple wounds when the initial inoculum level was 9 log CFU/mL (p0.05). The growth of C. albidus was improved when the temperature was 4°C. A high correlation between actual values was calculated (R2~0.99) for the C. albidus survival within the range of the predicted conditions found by the model. These results indicated the potential of using C. albidus for reducing apple spoilage, with considerations for food safety practices due to its rare association with human infections. KW - Survival KW - Apple KW - C. albidus KW - Mathematical model KW - Biocontrol N2 - Bu çalışmada, küf gelişimine karşı biyolojik kontrol aracı olan Cryptococcus albidus SAS157’nin Fuji elmalarında canlı kalma yeteneğini modellemek için Yapay Sinir Ağları (YSA) yöntemi kullanılmıştır. C. albidus (6, 9 ve 11 log CFU/mL) ve Pennicillum expansum (6 log CFU/mL) elmaların yüzeyinde açılan deliklere aşılanarak çeşitli sıcaklık (4, 10, 15 ve 25°C) ve bağıl nem (%85 veya %95) koşullarında 14 gün boyunca depolanmıştır. Elde edilen sonuçlar, C. albidus’un elma yaralarında başlangıç inokulum seviyesi 9 log CFU/mL olduğunda en iyi canlı kalma performansını gösterdiğini ortaya koymuştur (p0.05). Bununla birlikte, depolama sıcaklığının 4°C olması, C. albidus'un çoğalmasını anlamlı şekilde artırmıştı (p CR - [1] Errampalli, D. (2014). Penicillium expansum (blue mold). In Postharvest decay, Edited by S. Bautista- Banos, Elsevier Science Publishers, 189p. CR - [2] Zhong, L., Carere, J., Lu, Z., Lu, F., Zhou, T. (2018). Patulin in apples and apple-based food products: The burdens and the mitigation strategies. Toxins, 10(11), 475-480. CR - [3] Dukare, A.S., Paul, S., Nambi, V.E., Gupta, R.K., Singh, R., Sharma, K., Vishwakarma, R.K. (2019). Exploitation of microbial antagonists for the control of postharvest diseases of fruit: a review. Critical Reviews in Food Science and Nutrition, 59, 1498-1513. CR - [4] Delgado-Adámez, J., Fuentes-Pérez, G., Velardo-Micharet, B., González-Gómez, D. (2017). Application of microbial antagonists in combination with sodium bicarbonate to control postharvest diseases of sweet cherries. Acta Horticulture, 1161, 529-534. CR - [5] Droby, S., Wisniewski, M., Teixidó, N., Spadaro, D., Jijakli, M.H. (2016). The science, development, and commercialization of postharvest biocontrol products. Postharvest Biology and Technology, 122, 22-29. CR - [6] El-Tarabily, K.A., Sivasithamparam, K. (2006). Potential of yeasts as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Mycoscience, 47, 25–35. CR - [7] Rosa-Magri, M.M., Tauk-Tornisielo, S.M., Ceccato-Antonini, S.R. (2011). Bioprospection of yeasts as biocontrol agents against phytopathogenic molds. Brazilian Archives of Biology and Technology, 54, 1-5. CR - [8] Izgü, F., Altinbay, D. (2004). Isolation and characterization of the K5-type yeast killer protein and its homology with an exo-β-1, 3-glucanase. Bioscience, Biotechnology, and Biochemistry, 68, 685-693. CR - [9] Etebarian, H.R. (2006). Evaluation of Trichoderma isolates for biological control of charcoal stem rot in melon caused by Macrophomina phaseolina. Journal of Agricultural Science and Technology, 8, 243-250. CR - [10] Chand-Goyal, T., Spotts, R.A. (1996). Postharvest biological control of blue mold of apple and brown rot of sweet cherry by natural saprophytic yeasts alone or in combination with low doses of fungicides. Biological Control, 6(2), 253-259. CR - [11] Fan, Q., Tian, S. (2001). Postharvest biological control of grey mold and blue mold on apple by Cryptococcus albidus (Saito) Skinner. Postharvest Biology and Technology, 21(3), 341-350. CR - [12] Tournas, V.H., Katsoudas, E.J. (2019). Effect of CaCl2 and various wild yeasts from plant origin on controlling Penicillium expansum postharvest decays in Golden Delicious apples. Microbiology Insights, 12. CR - [13] Türkoğlu, S., Zengin, A., Ozturk, M., Çağrı-Mehmetoğlu, A. (2022). Mathematical modelling of biocontrol effect of Cryptococcus albidus on the growth of Penicillium expansum on Fuji apple fruits. Biological Control, 170, 104908. CR - [14] Mukherjee, A., Verma, J.P., Gaurav, A.K., Chouhan, G.K., Patel, J.S., Hesham, A.E.L. (2020). Yeast a potential bio-agent: future for plant growth and postharvest disease management for sustainable agriculture. Applied Microbiology and Biotechnology, 104, 1497-1510. CR - [15] Huang, Y., Kangas, L. J., Rasco, B. A. (2007). Applications of artificial neural networks (ANNs) in food science. Critical reviews in Food Science and Nutrition, 47(2), 113-126. CR - [16] Uca, E., Güleç, H. A. (2024). Process optimization for the extraction of phenolic compounds from pomegranate peels: Response surface methodology-desirability function and artificial neural network-genetic algorithm. Akademik Gıda, 22(1), 23-33. CR - [17] Augustinus, B., Sun, Y., Beuchat, C., Schaffner, U., Müller‐Schärer, H. (2020). Predicting impact of a biocontrol agent: integrating distribution modeling with climate‐dependent vital rates. Ecological Applications, 30(1), e02003. CR - [18] Vlajkov, V., Anđelić, S., Pajčin, I., Grahovac, M., Budakov, D., Jokić, A., Grahovac, J. (2022). Medium for the production of Bacillus-based biocontrol agent effective against aflatoxigenic Aspergillus flavus: Dual approach for modelling and optimization. Microorganisms, 10(6), 1165. CR - [19] Settier-Ramírez, L., López-Carballo, G., Hernández-Muñoz, P., Fontana, A., Strub, C., Schorr-Galindo, S. (2021). New isolated Metschnikowia pulcherrima strains from apples for postharvest biocontrol of Penicillium expansum and patulin accumulation. Toxins, 13(6), 397. CR - [20] Greenspan, L. (1977). Humidity fixed points of binary saturated aqueous solutions. Journal of Research National Bureau Standards, Sect A, Physics Chemistry, 81(1), 89-95. CR - [21] Drfungus (2023). Cryptococcus albidus. https://drfungus.org/knowledge-base/cryptococcus-albidus/ CR - [22] Beale, M.H., Hagan, M.T., Demuth, H.B. (2021). Deep Learning Toolbox User’s Guide. The MathWorks Inc. CR - [23] Lima, G., De Curtis, F., Castoria, R., De, Cicco, V. (2003). Integrated control of apple postharvest pathogens and survival of biocontrol yeasts in semi-commercial conditions. European Journal of Plant Pathology, 109, 341-349. CR - [24] Spadaro, D., Droby, S. (2016). Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists. Trends in Food Science and Technology, 47, 39-49. CR - [25] Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y. (2016). Deep learning (Vol. 1, No. 2). Cambridge: MIT press. CR - [26] Mohanty, S., Behera, H. S. (2020). Artificial neural network based crop yield prediction: A review. International Journal of Engineering and Advanced Technology, 9(3), 2466-2473. CR - [27] Kim, J., Kim, H. (2018). Application of artificial neural networks for predicting microbial growth in food preservation. Food Microbiology, 72, 116–123. CR - [28] Oliveira, V. F. D., Funari, A. P., Taborda, M., Magri, A. S. G. K., Levin, A. S., Magri, M. M. C. (2023). Cutaneous Naganishia albida (Cryptococcus albidus) infection: a case report and literature review. Revista do Instituto de Medicina Tropical de São Paulo, 65, e60. UR - https://doi.org/10.24323/akademik-gida.1746809 L1 - https://dergipark.org.tr/en/download/article-file/5073079 ER -