TY - JOUR T1 - Root system plasticity enhances phosphorus acquisition in sorghum for a low-input farming system AU - Nyongesa, Benson PY - 2025 DA - November Y2 - 2025 JF - International Journal of Agriculture Forestry and Life Sciences JO - Int J Agric For Life Sci PB - Volkan OKATAN WT - DergiPark SN - 2602-4381 SP - 65 EP - 72 VL - 9 IS - 2 LA - en AB - Phosphorus (P) deficiency remains a significant constraint to sorghum (Sorghum bicolor L.) productivity, particularly in smallholder farming systems with limited access to fertilizers. This study aimed to evaluate root system architecture (RSA) plasticity among improved sorghum varieties under contrasting P conditions to identify varieties with superior P-foraging traits for low-input systems. Eight sorghum varieties were grown under low (5.38 mg/kg) and high (50 mg/kg) P levels, and their root traits were characterized using high-resolution imaging and RhizoVision analysis. Six RSA traits: total root length (TRL), number of root tips (NRT), branching points (NBP), surface area (SA), root diameter (AD), and root volume (RV), were analyzed in this study. Analysis of variance revealed significant variety (V), Phosphorus (P), and V × P interaction effects (p < 0.001) for all traits. Under low P, varieties showed enhanced RSA expression: TRL increased by 58%, NRT by 142%, NBP by 210%, SA by 89%, and RV by 133%, while AD declined by 32%, indicating strategic carbon investment in absorptive roots. Notably, KARI Mtama 1 exhibited constitutive robustness, while T30b demonstrated exceptional plasticity. TRL, SA, NA, NRT, and RV had over 74% of heritability, demonstrating strong genetic control. These findings underline RSA plasticity as a key adaptive strategy for nutrient acquisition, providing valuable breeding targets for P-efficient cultivars. Integrating these traits into breeding programs can enhance P-use efficiency, with KARI Mtama 1 and T30b serving as donor parents for developing elite sorghum lines suited to low P conditions. KW - Low-input agriculture KW - Phenotypic plasticity KW - Phosphorus deficiency KW - Root system architecture KW - Sorghum CR - Anderson JM, Ingram JAI. 1993. Tropical soil biology and fertility. Wallingford: CAB. CR - Adu, M. O., Zigah, N., Yawson, D. O., Amoah, K. K., Afutu, E., Atiah, K., Darkwa, A. A., Asare, P. A. (2023.). Plasticity of root hair and rhizosheath traits and their relationship to phosphorus uptake in Sorghum. Plant Direct, 7: e521 1:22, https://doi.org/10.1002/pld3.521 CR - Bernardino, K. C., Pastina, M. M., Menezes, C. B., de Sousa, S. M., Maciel, L. S., Carvalho Jr, G., Guimarães, C. T., Barros, B. A., da Costa e Silva, L., Carneiro, P. C. S., Schaffert, R. E., Kochian, L. V., Magalhães, J. V. (2019). The genetic architecture of phosphorus efficiency in Sorghum involves pleiotropic QTL for root morphology and grain yield under low phosphorus availability in the soil. BMC Plant Biology, 19(1), 475. CR - Enyew, M., Geleta, M., Feyissa, T., Hammenhag, C., Tesfaye, K., Seyoum, A., Carlsson, A. S. (2023). Sorghum genotypes grown in simple rhizotrons display wide variation in root system architecture traits. Plant and Soil. https://doi.org/10.1007/s11104-023-06373-0 CR - FAOSTAT (2022). https://www.fao.org/faostat/en/?utm_source=chatgpt.com#home CR - Freschet, G. T., Roumet, C. (2017). Sampling roots to capture plant and soil functions. Functional Ecology, 31(8), 1506–1518. https://doi.org/10.1111/1365-2435.12934 CR - Gemenet, D. C., Leiser, W. L., Beggi, F., Herrmann, L. H., Vadez, V., Rattunde, H. F. W., Weltzien, E., Hash, C. T., Buerkert, A., Haussmann, B. I. G. (2016). Overcoming phosphorus deficiency in West African pearl millet and sorghum production systems: Promising options for crop improvement. Frontiers in Plant Science, 7, 1389. https://doi.org/10.3389/fpls.2016.01389 CR - Gladman, N., Hufnagel, B., Regulski, M., Liu, Z., Wang, X., Chougule, K., Kochian, L., Magalhães, J., Ware, D. (2022). Sorghum root epigenetic landscape during limiting phosphorus conditions. Plant Direct, 6(5), Article e393. https://doi.org/10.1002/pld3.393 CR - Holz, M., Zarebanadkouki, M., Bernard, P., Hoffmann, M., Dubbert, M. (2024). Root and rhizosphere traits for enhanced water and nutrient uptake efficiency in dynamic environments. Frontiers in Plant Science, 15, 1403958. https://doi.org/10.3389/fpls.2024.1403958 CR - Hufnagel, B., Bernardino, K. C., Malosetti, M., Sousa, S. M., Silva, L. A., Guimaraes, C. T., Coelho, A. M., Santos, T. T., Viana, J. H. M., Schaffert, R. E., Kochian, L. V., Eeuwijk, F. A., Magalhaes, J. V. (2024). Multi-trait association mapping for phosphorous efficiency reveals flexible root architectures in Sorghum. BMC Plant Biology, 24(1), 562. https://doi.org/10.1186/s12870-024-05183-5 CR - IBM Corp. (2015). IBM SPSS Statistics for Windows (Version 23.0) [Computer software]. IBM Corp. CR - Jackson, M. L. (1962). Soil chemical analysis (pp. 151–153). Englewood Cliffs, NJ: Prentice Hall. CR - Kebede, A., Barka, G. D., Kebede, M., Menamo, T. M., Tadesse, T. (2025). Phenotypic analysis of Sorghum [Sorghum bicolor (L) Moench] genotypes for drought responsive traits. Cogent Food & Agriculture, 11(1), 2454984 Kenya Plant Health Inspectorate Service [KEPHIS]. (2024). National crop variety list: 2024 edition. Nairobi, Kenya. CR - Khalifa, M., Eltahir, E. A. B. (2023, June 23). Assessment of global sorghum production, tolerance, and climate risk. Frontiers in Sustainable Food Systems, 7: 1184373. https://doi.org/10.3389/fsufs.2023.1184373 CR - Khoddami, A., Messina, V., Vadabalija Venkata, K., Farahnaky, A., Blanchard, C. L., Roberts, T. H. (2021). Sorghum in foods: Functionality and potential in innovative products. Critical Reviews in Food Science and Nutrition, 63(9), 1170–1186. https://doi.org/10.1080/10408398.2021.196079 CR - Kihara, J., Njoroge, S. (2013). Phosphorus agronomic efficiency in maize-based cropping systems: A focus on western Kenya. Field Crops Research, 150, 1–8. https://doi.org/10.1016/j.fcr.2013.05.010 CR - Kisinyo, P. O., Othieno, C. O., Gudu, S. O., Okalebo, J. R., Opala, P. A., Ng'etich, W. K., Opile, W. R. (2014). Immediate and residual effects of lime and phosphorus fertilizer on soil acidity and maize production in western Kenya. Experimental Agriculture, 50(1), 128–143. https://doi.org/10.1017/S0014479713000217 CR - Lee, S., Choi, Y.-M., Shin, M.-J., Yoon, H., Wang, X., Lee, Y., Yi, J., Jeon, Y.-A., Desta, K. T. (2023). Exploring the potentials of sorghum genotypes: A comprehensive study on nutritional qualities, functional metabolites, and antioxidant capacities. Frontiers in Nutrition, 10, 1238729. https://doi.org/10.3389/fnut.2023.1238729 CR - Liaqat, H., Adnan, M., Batool, S., Saeed, Q., Mukhtar, T., Yousaf, M. N., Ahmad, S., Shahid, M., Ejaz, S., Akhtar, N. (2024). Sorghum: A star crop to combat abiotic stresses, food insecurity, and hunger under a changing climate: A review. Journal of Soil Science and Plant Nutrition, 24(1), 293. https://doi.org/10.1007/s42729-023-01607-7 CR - Lopez-Bucio, J., Hernández-Abreu, E., Sánchez-Calderón, L., Nieto-Jacobo, M. F., Simpson, J., Herrera-Estrella, L. (2002). Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiology, 129, 244–256. https://doi.org/10.1104/pp.010934 CR - Lynch, J. P. (2011). Root phenes for enhanced soil exploration and phosphorus acquisition: Tools for future crops. Plant Physiology, 156(3), 1041–1049. https://doi.org/10.1104/pp.111.175414 CR - Marsalis, M. A., Angadi, S. V., Contreras-Govea, F. E. (2010). Dry matter yield and nutritive value of corn, forage sorghum, and BMR forage sorghum at different plant populations and nitrogen rates. Field Crops Research, 116, 52–57. https://doi.org/10.1016/j.fcr.2009.11.009 CR - Mathew, I., Shimelis, H. (2022). Genetic analyses of root traits: Implications for environmental adaptation and new variety development: A review. Plant Breeding, 141(6), 683–702. https://doi.org/10.1111/pbr.13049 CR - Mason, S. C., Kathol, D., Eskridge, K. M., Galusha, T. D. (2008). Yield increase has been more rapid for maize than for grain sorghum. Crop Science, 48, 1560–1568. https://doi.org/10.2135/cropsci2007.09.0529 CR - Mikwa, E. O., Wittkop, B., Windpassinger, S. M., Weber, S. E., Ehrhardt, D., Snowdon, R. J. (2024). Early exposure to phosphorus starvation induces genetically determined responses in Sorghum bicolor roots. Theoretical and Applied Genetics, 137(220). https://doi.org/10.1007/s00122-024-04728-4 CR - Nelson, D. W., Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis: Part 2. Chemical and microbiological properties (2nd ed., pp. 539–579). Madison, WI: American Society of Agronomy. CR - Okalebo, J. R., Othieno, C. O., Woomer, P. L., Karanja, N. K., Semoka, J. R. M., Bekunda, M. A., Mugendi, D. N., Muasya, R. M., Bationo, A., Mukhwana, E. J. (2006). Available technologies to replenish soil fertility in East Africa. Nutrient Cycling in Agroecosystems, 76, 153–170 CR - Parra-Londono, S., Kavka, M., Samans, B., Snowdon, R., Wieckhorst, S., Uptmoor, R., Ordon, F. (2018). Sorghum root-system classification in contrasting phosphorus supply by combining morphological and anatomical traits. Annals of Botany, 121(2), 267–280. https://doi.org/10.1093/aob/mcx148 CR - Péret, B., Desnos, T., Jost, R., Kanno, S., Berkowitz, O., Nussaume, L. (2014). Root architecture responses: In search of phosphate. Plant Physiology, 166, 1713–1723. https://doi.org/10.1104/pp.114.244541 CR - Pregitzer, K. S. (2002). Fine roots of trees – A new perspective. New Phytologist, 154(2), 267–270. CR - Rajamanickam, V., Vinod, K. K., Vengavasi, K., Kumar, T., Chinnusamy, V., Pandey, R. (2024). Root architectural adaptations to phosphorus deficiency: Unraveling genotypic variability in wheat seedlings. Agriculture, 14(3), 447. https://doi.org/10.3390/agriculture14030447 CR - Ricker-Gilbert, J. (2020). Inorganic fertilizer use among smallholder farmers in Sub-Saharan Africa: Implications for input subsidy policies. In S. Gomez y Paloma, L. Riesgo, & K. Louhichi (Eds.), The role of smallholder farms in food and nutrition security (pp. 81–98). Springer International Publishing. https://doi.org/10.1007/978-3-030-42148-9_5 CR - Ristova, D., Busch, W. (2014). Natural variation of root traits: From development to nutrient uptake. Current Opinion in Plant Biology, 59, 102001. https://doi.org/10.1016/j.pbi.2020.102001 CR - Sagnon, A., Traore, M., Tibiri, E. B., et al. (2024). Enhancing the use of phosphate rock through microbially-mediated compost transformation to improve agronomic and economic profitability in Sub-Saharan Africa. Frontiers in Sustainable Food Systems, 8, 1445683. https://doi.org/10.3389/fsufs.2024.1445683 CR - Sahrawat, K. L. (1987). Determination of calcium, magnesium, zinc, and manganese in plant tissue using a dilute HCl extraction method. Communications in Soil Science and Plant Analysis, 18(9), 947–962. CR - Schulze, J., Temple, G., Temple, S. J., Beschow, H., Vance, C. P. (2006). Nitrogen fixation by white lupin under phosphorus deficiency. Annals of Botany, 98, 731–740. https://doi.org/10.1093/aob/mcl154 CR - Seethepalli, A., Dhakal, K., Griffiths, M., Guo, H., Freschet, G. T., York, L. M. (2021). RhizoVision Explorer: Open-source software for root image analysis and measurement standardization. Plant Phenomics, 2021, Article 9846263. https://doi.org/10.34133/2021/9846263 CR - Silva, K. J., Santos, C. V., Menezes, C. B., de Sousa, S. M. (2024). Sorghum hybrids grown in hydroponics contrast for phosphorus use efficiency. Brazilian Journal of Biology, 84, e253083. https://doi.org/10.1590/1519-6984.253083 CR - Silveira, T. C., Pegoraro, R. F., Kondo, M. K., Portugal, A. F., Resende, A. V. (2018). Sorghum yield after liming and combinations of phosphorus sources. Revista Brasileira de Engenharia Agrícola e Ambiental, 22, 243–248. https://doi.org/10.1590/1807-1929/agriambi.v22n4p243-248 CR - Soltanpour, P. N., Workman, S. (1979). Modification of the NaHCO₃-DTPA soil test to omit carbon black. Communications in Soil Science and Plant Analysis, 10(11), 1411–1420. CR - Umakanth, A. V., Kumar, A. A., Vermerris, W., Tonapi, V. A. (2019). Chapter 16 - Sweet sorghum for biofuel industry. In Breeding sorghum for diversified end uses. 255-270. Woodhead Publishing Series in Food Science, Technology and Nutrition CR - Wu, Q., Pagès L., Wu, J. (2016). Relationships between root diameter, root length and root branching along lateral roots in adult, field-grown maize. Annal of Botany, 117(3) 379-390. doi: 10.1093/aob/mcv185. UR - https://dergipark.org.tr/en/pub/ijafls/issue//1747282 L1 - https://dergipark.org.tr/en/download/article-file/5075208 ER -