TY - JOUR T1 - A Data-Driven BIM Framework for Digital Twin Integration with ISO 23247-Compliant Automation in Construction AU - Aydın, Murat PY - 2025 DA - September Y2 - 2025 DO - 10.54287/gujsa.1750405 JF - Gazi University Journal of Science Part A: Engineering and Innovation JO - GU J Sci, Part A PB - Gazi University WT - DergiPark SN - 2147-9542 SP - 706 EP - 736 VL - 12 IS - 3 LA - en AB - The increasing complexity of today's construction projects makes advanced data management and interoperability solutions essential for optimizing decision-making processes, ensuring regulatory compliance, and enabling real-time monitoring. While traditional BIM methods are effective in terms of graphical visualization, they lack structured parametric and regulatory data integration, which limits their potential for synchronization with digital twin systems. This data fragmentation leads to inefficiencies in automation processes, reducing the effectiveness of predictive analytics and lifecycle adaptability. To address this gap, this study presents a BIM framework based on the ISO 23247 standard, aiming to achieve structured data management and digital twin integration by systematically classifying and organizing Graphical, Non-Graphical, and Document Data. The proposed framework enhances BIM's functionality as an intelligent asset management system by increasing interoperability, enabling automated compliance verification, and strengthening sensor-driven analysis. Industry case studies validate the framework's adaptability across design models, regulatory documents, and predictive analyses, and demonstrate its scalability in digital construction environments. Additionally, this study highlights the role of AI-powered compliance automation in optimizing regulatory oversight and operational efficiency and examines its potential for industry-wide standardization. Future research should focus on expanding digital twin applications, integrating AI-powered automation, and developing structured BIM methods. This study provides a solid foundation for data-driven construction management by aligning BIM workflows with ISO 23247, ensuring long-term scalability and efficiency. KW - BIM Framework KW - ISO 23247 KW - Digital Twin KW - Building Information Modelling KW - Compliance Automation KW - Data Governance KW - ISO 19650 CR - Afif Supianto, A., Nasar, W., Margrethe Aspen, D., Hasan, A., Karlsen, A. S. T., & Torres, R. D. S. (2024). An urban digital twin framework for reference and planning. IEEE Access, 12, 152444-152465. https://doi.org/10.1109/ACCESS.2024.3478379 CR - Aheleroff, S., Xu, X., Zhong, R. Y., & Lu, Y. (2021). Digital twin as a service (DTaaS) in industry 4.0: an architecture reference model. Advanced Engineering Informatics, 47, 101225. https://doi.org/10.1016/j.aei.2020.101225 CR - Ammar, A., Nassereddine, H., AbdulBaky, N., AbouKansour, A., Tannoury, J., Urban, H., & Schranz, C. (2022). Digital twins in the construction industry: a perspective of practitioners and building authority. Frontiers in Built Environment, 8, 834671. https://doi.org/10.3389/fbuil.2022.834671 CR - Aragón, A., Arquier, M., Tokdemir, O. B., Enfedaque, A., Alberti, M. G., Lieval, F., Loscos, E., Pavón, R. M., Novischi, D. M., Legazpi, P. V., & Yagüe, Á. (2025). Seeking a definition of digital twins for construction and infrastructure management. Applied Sciences, 15(3), 1557. https://doi.org/10.3390/app15031557 CR - Ba, L., Tangour, F., El Abbassi, I., & Absi, R. (2025). Analysis of digital twin applications in energy efficiency: a systematic review. Sustainability, 17(8), 3560. https://doi.org/10.3390/su17083560 CR - Boje, C., Kubicki, S., Guerriero, A., Rezgui, Y., & Zarli, A. (2022). Digital twins for the built environment. In Buildings and Semantics (pp. 179-199). CRC Press. https://doi.org/10.1201/9781003204381-10 CR - Caiza, G., & Sanz, R. (2024a). An immersive digital twin applied to a manufacturing execution system for the monitoring and control of industry 4.0 processes. Applied Sciences, 14(10), 4125. https://doi.org/10.3390/app14104125 CR - Caiza, G., & Sanz, R. (2024b). Immersive digital twin under ISO 23247 applied to flexible manufacturing processes. Applied Sciences, 14(10), 4204. https://doi.org/10.3390/app14104204 CR - Calvetti, D., Mêda, P., Hjelseth, E., & Sujan, S. F. (2023). Digital twin for AECOO – framework proposal and use cases. In: ECPPM 2022 - eWork and eBusiness in Architecture, Engineering and Construction 2022 (pp. 221-228). CRC Press. https://doi.org/10.1201/9781003354222-28 CR - D'Amico, R. D., Erkoyuncu, J. A., Addepalli, S., & Penver, S. (2022). Cognitive digital twin: an approach to improve the maintenance management. CIRP Journal of Manufacturing Science and Technology, 38, 613-630. https://doi.org/10.1016/j.cirpj.2022.06.004 CR - El Bazi, N., Mabrouki, M., Laayati, O., Ouhabi, N., El Hadraoui, H., Hammouch, F.-E., & Chebak, A. (2023). Generic multi-layered digital-twin-framework-enabled asset lifecycle management for the sustainable mining industry. Sustainability, 15(4), 3470. https://doi.org/10.3390/su15043470 CR - Faliagka, E., Christopoulou, E., Ringas, D., Politi, T., Kostis, N., Leonardos, D., Tranoris, C., Antonopoulos, C. P., Denazis, S., & Voros, N. (2024). Trends in digital twin framework architectures for smart cities: a case study in smart mobility. Sensors, 24(5), 1665. https://doi.org/10.3390/s24051665 CR - Ferko, E., Bucaioni, A., & Behnam, M. (2022). Architecting digital twins. IEEE Access, 10, 50335-50350. https://doi.org/10.1109/ACCESS.2022.3172964 CR - Galuzin, V., Galitskaya, A., Grachev, S., Larukhin, V., Novichkov, D., Skobelev, P., & Zhilyaev, A. (2022). Autonomous digital twin of enterprise: method and toolset for knowledge-based multi-agent adaptive management of tasks and resources in real time. Mathematics, 10(10), 1662. https://doi.org/10.3390/math10101662 CR - Ghorbani, Z., & Messner, J. (2024). A categorical approach for defining digital twins in the AECO industry. Journal of Information Technology in Construction, 29, 198-218. https://doi.org/10.36680/j.itcon.2024.010 CR - Guerra, V., Hamon, B., Bataillou, B., Inamdar, A., & van Driel, W. D. (2024). Towards a digital twin architecture for the lighting industry. Future Generation Computer Systems, 155, 80-95. https://doi.org/10.1016/j.future.2024.01.028 CR - Hakiri, A., Gokhale, A., Yahia, S. Ben, & Mellouli, N. (2024). A comprehensive survey on digital twin for future networks and emerging internet of things industry. Computer Networks, 244, 110350. https://doi.org/10.1016/j.comnet.2024.110350 CR - Hananto, A. L., Tirta, A., Herawan, S. G., Idris, M., Soudagar, M. E. M., Djamari, D. W., & Veza, I. (2024). Digital twin and 3d digital twin: concepts, applications, and challenges in industry 4.0 for digital twin. Computers, 13(4), 100. https://doi.org/10.3390/computers13040100 CR - Huang, H., Ji, T., & Xu, X. (2022). Digital Twin platforms: architectures and functions. Volume 2: Manufacturing Processes; Manufacturing Systems, 85819, V002T06A008. https://doi.org/10.1115/MSEC2022-85085 CR - Iliuţă, M.-E., Moisescu, M.-A., Pop, E., Ionita, A.-D., Caramihai, S.-I., & Mitulescu, T.-C. (2024). Digital twin—a review of the evolution from concept to technology and its analytical perspectives on applications in various fields. Applied Sciences, 14(13), 5454. https://doi.org/10.3390/app14135454 CR - Iranshahi, K., Brun, J., Arnold, T., Sergi, T., & Müller, U. C. (2025). Digital twins: recent advances and future directions in engineering fields. Intelligent Systems with Applications, 26, 200516. https://doi.org/10.1016/j.iswa.2025.200516 CR - Karatzas, S., Papageorgiou, G., Lazari, V., Bersimis, S., Fousteris, A., Economou, P., & Chassiakos, A. (2024). A text analytic framework for gaining insights on the integration of digital twins and machine learning for optimizing indoor building environmental performance. Developments in the Built Environment, 18, 100386. https://doi.org/10.1016/j.dibe.2024.100386 CR - Krishnamenon, M., Tuladhar, R., Azghadi, M. R., Loughran, J. G., & Pandey, G. (2021). Digital twins and their significance in engineering asset management. 2021 International Conference on Maintenance and Intelligent Asset Management (ICMIAM), 1-6. https://doi.org/10.1109/ICMIAM54662.2021.9715200 CR - Kumar, R., & Agrawal, N. (2024). Shaping the future of industry: understanding the dynamics of industrial digital twins. Computers & Industrial Engineering, 191, 110172. https://doi.org/10.1016/j.cie.2024.110172 CR - Lindkvist, C. M., Hafeld, A., & Haugen, T. B. (2022). Interfacing between FM and project phases through digital processes and collaborative practices. IOP Conference Series: Earth and Environmental Science, 1101(6), 062010. https://doi.org/10.1088/1755-1315/1101/6/062010 CR - Liu, Y., Feng, J., Lu, J., & Zhou, S. (2024). A review of digital twin capabilities, technologies, and applications based on the maturity model. Advanced Engineering Informatics, 62, 102592. https://doi.org/10.1016/j.aei.2024.102592 CR - Luther, W., Baloian, N., Biella, D., & Sacher, D. (2023). Digital twins and enabling technologies in museums and cultural heritage: an overview. Sensors, 23(3), 1583. https://doi.org/10.3390/s23031583 CR - Mata, O., Ponce, P., Perez, C., Ramirez, M., Anthony, B., Russel, B., Apte, P., MacCleery, B., & Molina, A. (2025). Digital twin designs with generative AI: crafting a comprehensive framework for manufacturing systems. Journal of Intelligent Manufacturing, 1-24. https://doi.org/10.1007/s10845-025-02583-8 CR - Michael, J., Cleophas, L., Zschaler, S., Clark, T., Combemale, B., Godfrey, T., Khelladi, D. E., Kulkarni, V., Lehner, D., Rumpe, B., Wimmer, M., Wortmann, A., Ali, S., Barn, B., Barosan, I., Bencomo, N., Bordeleau, F., Grossmann, G., Karsai, G., … Vangheluwe, H. (2025). Model‐driven engineering for digital twins: opportunities and challenges. Systems Engineering, 28(5), 659-670. https://doi.org/10.1002/sys.21815 CR - Mihai, S., Yaqoob, M., Hung, D. V, Davis, W., Towakel, P., Raza, M., Karamanoglu, M., Barn, B., Shetve, D., Prasad, R. V, Venkataraman, H., Trestian, R., & Nguyen, H. X. (2022). Digital twins: a survey on enabling technologies, challenges, trends and future prospects. IEEE Communications Surveys & Tutorials, 24(4), 2255-2291. https://doi.org/10.1109/COMST.2022.3208773 CR - Moiceanu, G., & Paraschiv, G. (2022). Digital twin and smart manufacturing in industries: a bibliometric analysis with a focus on industry 4.0. Sensors, 22(4), 1388. https://doi.org/10.3390/s22041388 CR - Mylonas, G., Kalogeras, A., Kalogeras, G., Anagnostopoulos, C., Alexakos, C., & Munoz, L. (2021). Digital twins from smart manufacturing to smart cities: a survey. IEEE Access, 9, 143222-143249. https://doi.org/10.1109/ACCESS.2021.3120843 CR - Nhamage, I. A. (2023). Development of BIM-based digital twin model for fatigue assessment in metallic railway bridges. U.Porto Journal of Engineering, 9(5), 12-23. https://doi.org/10.24840/2183-6493_009-005_001565 CR - Nour El-Din, M., Pereira, P. F., Poças Martins, J., & Ramos, N. M. M. (2022). Digital twins for construction assets using BIM standard specifications. Buildings, 12(12), 2155. https://doi.org/10.3390/buildings12122155 CR - Penteado, G. U. S., de Carvalho Michalski, M. A., & de Souza, G. F. M. (2025). Digital twins in asset prognosis and health management: definitions, applications, state of the art, and future trends. In International Joint conference on Industrial Engineering and Operations Management (pp. 151-165). Springer. https://doi.org/10.1007/978-3-031-80785-5_12 CR - Perisic, A., & Perisic, B. (2024). Digital twins verification and validation approach through the quintuple helix conceptual framework. Electronics, 13(16), 3303. https://doi.org/10.3390/electronics13163303 CR - Pregnolato, M., Gunner, S., Voyagaki, E., De Risi, R., Carhart, N., Gavriel, G., Tully, P., Tryfonas, T., Macdonald, J., & Taylor, C. (2022). Towards civil engineering 4.0: concept, workflow and application of digital twins for existing infrastructure. Automation in Construction, 141, 104421. https://doi.org/10.1016/j.autcon.2022.104421 CR - Rathore, M. M., Shah, S. A., Shukla, D., Bentafat, E., & Bakiras, S. (2021). The role of ai, machine learning, and big data in digital twinning: a systematic literature review, challenges, and opportunities. IEEE Access, 9, 32030-32052. https://doi.org/10.1109/ACCESS.2021.3060863 CR - Rayhana, R., Bai, L., Xiao, G., Liao, M., & Liu, Z. (2024). Digital twin models: functions, challenges, and industry applications. IEEE Journal of Radio Frequency Identification, 8, 282-321. https://doi.org/10.1109/JRFID.2024.3387996 CR - Sharma, A., Kosasih, E., Zhang, J., Brintrup, A., & Calinescu, A. (2022). Digital twins: state of the art theory and practice, challenges, and open research questions. Journal of Industrial Information Integration, 30, 100383. https://doi.org/10.1016/j.jii.2022.100383 CR - Teixeira, F. F., Mashaly, I., Shafiei, M., Xu, Q., Zhu, G., & Karlovsek, J. (2024). Integrating digital twins in urban sustainability: a framework for university campus applications. In: Digital Twin Computing for Urban Intelligence (pp. 185-207). Springer. https://doi.org/10.1007/978-981-97-8483-7_9 CR - Van Bossuyt, D. L., Allaire, D., Bickford, J. F., Bozada, T. A., Chen, W. (Wayne), Cutitta, R. P., Cuzner, R., Fletcher, K., Giachetti, R., Hale, B., Huang, H. H., Keidar, M., Layton, A., Ledford, A., Lesse, M., Lussier, J., Malak, R., Mesmer, B., Mocko, G., … Zeng, Z. (2025). The future of digital twin research and development. Journal of Computing and Information Science in Engineering, 25(8), 80801. https://doi.org/10.1115/1.4068082 CR - Vieira, J., Poças Martins, J., de Almeida, N. M., Patrício, H., & Morgado, J. (2023). Reshaping the digital twin construct with levels of digital twinning (LoDT). Applied System Innovation, 6(6), 114. https://doi.org/10.3390/asi6060114 CR - Wang, A.-J., Li, H., He, Z., Tao, Y., Wang, H., Yang, M., Savic, D., Daigger, G. T., & Ren, N. (2024). Digital twins for wastewater treatment: a technical review. Engineering, 36, 21-35. https://doi.org/10.1016/j.eng.2024.04.012 CR - Werbińska-Wojciechowska, S., Giel, R., & Winiarska, K. (2024). Digital twin approach for operation and maintenance of transportation system—systematic review. Sensors, 24(18), 6069. https://doi.org/10.3390/s24186069 CR - Wicaksono, H., Nisa, M. U., & Vijaya, A. (2023). Towards intelligent and trustable digital twin asset management platform for transportation infrastructure management using knowledge graph and explainable artificial intelligence (XAI). 2023 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 0528-0532. https://doi.org/10.1109/IEEM58616.2023.10406401 CR - Yassin, M. A. M., Shrestha, A., & Rabie, S. (2023). Digital twin in power system research and development: principle, scope, and challenges. Energy Reviews, 2(3), 100039. https://doi.org/10.1016/j.enrev.2023.100039 CR - Younes, F., Lahsen-Cherif, I., & Ghazi, H. El. (2024). Toward a city digital twin: design principles, and challenges. In: 2024 7th International Conference on Advanced Communication Technologies and Networking (CommNet), 1-5. https://doi.org/10.1109/CommNet63022.2024.10793378 CR - Zahedi, F., Alavi, H., Majrouhi Sardroud, J., & Dang, H. (2024). Digital twins in the sustainable construction industry. Buildings, 14(11), 3613. https://doi.org/10.3390/buildings14113613 CR - Zhang, T., Ren, G., Ming, H., Zhang, G., & Wang, J. (2022). Application exploration of digital twin in rail transit health management. 2022 Global Reliability and Prognostics and Health Management (PHM-Yantai), 1-5. https://doi.org/10.1109/PHM-Yantai55411.2022.9942083 UR - https://doi.org/10.54287/gujsa.1750405 L1 - https://dergipark.org.tr/en/download/article-file/5088899 ER -