TY - JOUR T1 - Biostimulants as a Sustainable Strategy for Enhancing Vegetable Production: A Literature Review AU - Bayram, Ceren Ayşe AU - Murmu, Kanu PY - 2025 DA - December Y2 - 2025 DO - 10.31015/2025.si.8 JF - International Journal of Agriculture Environment and Food Sciences JO - int. j. agric. environ. food sci. PB - Gültekin ÖZDEMİR WT - DergiPark SN - 2618-5946 SP - 15 EP - 16 VL - 9 IS - Special LA - en AB - Plant biostimulants have emerged as promising tools to enhance plant resilience against a wide range of abiotic and biotic stresses while simultaneously improving growth, yield, and product quality. This review critically evaluates the effects of various types of biostimulants including humic substances, protein hydrolysates, seaweed extracts, microbial inoculants, and silicon compounds on leafy vegetables cultivated under temperate and subtropical conditions. Amino acid–based biostimulants have demonstrated significant physiological and biochemical benefits, particularly in radish. Application of aspartic acid notably enhanced phenolic contents in the shoot (by 1.01%) and root (by 12.23%) compared with chemical fertilizer treatments. Total protein content increased in the shoot with glycine (by 251.81%) and in the root with aspartic acid (by 57.06%). Shoot ascorbic acid levels were markedly improved by aspartic acid (179.90%), vitamin B complex (159.91%), and lysine (139.92%). Similarly, plant fresh and dry weights increased substantially with vitamin B complex (478.31%) and aspartic acid (364.73%). Nitrogen and phosphorus concentrations in radish roots were higher with vitamin B complex (25.93%) and lysine (100%) treatments. Moreover, soil organic matter content improved with aspartic acid (61.51%), followed by vitamin B complex (60.13%). Emphasis is placed on the mechanisms of action, optimal timing of application, and crop-specific responses of biostimulants under stress conditions such as salinity, drought, heat, cold, and nutrient deficiency. Comparative insights are also provided regarding their roles in enhancing photosynthesis, nutrient uptake, biomass accumulation, and postharvest quality. Furthermore, this review highlights commercially available biostimulant formulations currently used in horticulture and summarizes recent findings through tabulated data. Overall, evidence suggests that biostimulants, when properly integrated with crop type and climatic conditions, represent a sustainable and effective strategy to mitigate environmental stresses and enhance the productivity, nutritional value, and overall quality of leafy vegetable production systems. KW - Abiotic stress KW - Biostimulants KW - Nutrient uptake KW - Sustainable agriculture KW - Vegetables CR - Anjum, K., Ahmed, M., Baber, J. K., Alizai, M. A., Ahmed, N., & Tareen, M. H. (2014). Response of garlic bulb yield to bio-stimulant (Bio-Cozyme) under calcareous soil. Life Science International Journal, 8, 3058–3062. CR - Arshad, M., Shaharoona, B., & Mahmood, T. (2008). Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield and ripening of pea (Pisum sativum L.). Pedosphere, 18(5), 611–620. https://doi.org/10.1016/S1002-0160(08)60055-7 CR - Ashraf, M. A., Akbar, A., Askari, S. H., Iqbal, M., Rasheed, R., & Hussain, I. (2018). Recent advances in abiotic stress tolerance of plants through chemical priming: An overview. In A. Rakshit & H. B. Singh (Eds.), Advances in seed priming (pp. 51–79). Springer. https://doi.org/10.1007/978-981-13-0032-5 CR - Bákonyi, N., Kisvarga, S., Barna, D., Tóth, I. O., El-Ramady, H., Abdalla, N., Kovács, S., Rozbach, M., Fehér, C., & Elhawat, N. (2020). Chemical traits of fermented alfalfa brown juice: Its implications on physiological, biochemical, anatomical, and growth parameters of Celosia. Agronomy, 10(2), 247. https://doi.org/10.3390/agronomy10020247 CR - Baltazar, M., Correia, S., Guinan, K. J., Sujeeth, N., Bragança, R., & Gonçalves, B. (2021). Recent advances in the molecular effects of biostimulants in plants: An overview. Biomolecules, 11(8), 1096. https://doi.org/10.3390/biom11081096 CR - Bhattacharyya, D., Babgohari, M. Z., Rathor, P., & Prithiviraj, B. (2015). Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae, 196, 39–48. https://doi.org/10.1016/j.scienta.2015.09.012 CR - Ben Mrid, R., Benmrid, B., Hafsa, J., Boukcim, H., Sobeh, M., & Yasri, A. (2021). Secondary metabolites as biostimulant and bioprotectant agents: A review. Science of the Total Environment, 777, 146204. https://doi.org/10.1016/j.scitotenv.2021.146204 CR - Bhise, K. K., & Dandge, P. B. (2019). Mitigation of salinity stress in plants using plant growth promoting bacteria. Symbiosis, 79(3), 191–204. CR - Błaszczyk, L., Siwulski, M., Sobieralski, K., Lisiecka, J., & Jędryczka, M. (2014). Trichoderma spp.—Application and prospects for use in organic farming and industry. Journal of Plant Protection Research, 54(4), 309–317. https://doi.org/10.2478/jppr-2014-0047 CR - Blaylock, A. D. (1994). Soil salinity, salt tolerance and growth potential of horticultural and landscape plants (Bulletin B-988). University of Wyoming Cooperative Extension Service. CR - Botta, A. (2012, November). Enhancing plant tolerance to temperature stress with amino acids: An approach to their mode of action. In I World Congress on the Use of Biostimulants in Agriculture (Vol. 1009, pp. 29–35). https://doi.org/10.17660/ActaHortic.2013.1009.1 CR - Boukhari, M., Barakate, M., Bouhia, Y., & Lyamlouli, K. (2020). Trends in seaweed extract-based biostimulants: Manufacturing process and beneficial effects on soil-plant systems. Plants, 9(3), 359. https://doi.org/10.3390/plants9030359 CR - Bradáčová, K., Weber, N. F., Morad-Talab, N., Asim, M., Imran, M., & Weinmann, M. (2016). Micronutrients (Zn/Mn), seaweed extracts, and plant growth-promoting bacteria as cold-stress protectants in maize. Chemical and Biological Technologies in Agriculture, 3(1), 19. CR - Brock, A. K., Berger, B., Mewis, I., & Ruppel, S. (2013). Impact of the PGPB Enterobacter radicincitans DSM 16656 on growth, glucosinolate profile and immune responses of Arabidopsis thaliana. Microbial Ecology, 65(3), 661–670. CR - Bulgari, R., Cocetta, G., Trivellini, A., Vernieri, P., & Ferrante, A. (2015). Biostimulants and crop responses: A review. Biological Agriculture & Horticulture, 31(1), 1–17. https://doi.org/10.1080/01448765.2014.964649 CR - Calvo, P., Nelson L. and Kloepper J. (2014). Agricultural uses of plant bio stimulants. Plant Soil, 12(383), 341. CR - Camejo, D., Rodríguez, P., Morales, M. A., Dell’Amico, J. M., Torrecillas, A., & Alarcón, J. J. (2005). High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. Journal of Plant Physiology, 162, 281–289. https://doi.org/10.1016/j.jplph.2004.07.014 CR - Canellas, L. P., Olivares, F. L., Aguiar, N. O., Jones, D. L., Nebbioso, A., Mazzei, P., & Piccolo, A. (2015). Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae, 196, 15–27. https://doi.org/10.1016/j.scienta.2015.09.013 CR - Canellas, L. P., Olivares, F. L., Okorokova-Facanha, A. L., & Facanha, A. R. (2002). Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiology, 130, 1951–1957. CR - Cao, K., Yu, J., Xu, D., Ai, K., Bao, E., & Zou, Z. (2018). Exposure to lower red to far-red light ratios improves tomato tolerance to salt stress. BMC Plant Biology, 18, 10–15. CR - Colla, G., Rouphael, Y., Leonardi, C., & Bie, Z. (2010). Role of grafting in vegetable crops grown under saline conditions. Scientia Horticulturae, 127, 147–155. https://doi.org/10.1016/j.scienta.2010.08.004 CR - Colla, G., Rouphael, Y., Canaguier, R., Svecova, E., & Cardarelli, M. (2014). Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Frontiers in Plant Science, 5, 448. https://doi.org/10.3389/fpls.2014.00448 CR - Colla, G., Nardi, S., Cardarelli, M., Ertani, A., Lucini, L., Canaguier, R., & Rouphael, Y. (2015). Protein hydrolysates as biostimulants in horticulture. Scientia Horticulturae, 196, 28–38. https://doi.org/10.1016/j.scienta.2015.08.037 CR - Colla, G., Hoagland, L., Ruzzi, M., Cardarelli, M., Bonini, P., Canaguier, R., & Rouphael, Y. (2017). Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Frontiers in Plant Science, 8, 2202. https://doi.org/10.3389/fpls.2017.02202 CR - De Saeger, J., Van Praet, S., Vereecke, D., Park, J., Jacques, S., Han, T., & Depuydt, S. (2019). Toward the molecular understanding of the action mechanism of Ascophyllum nodosum extracts on plants. Journal of Applied Phycology, 32, 573–597. CR - De Vasconcelos, A. C. F., & Chaves, L. H. G. (2019). Biostimulants and their role in improving plant growth under abiotic stresses. In Biostimulants in Plant Science. IntechOpen. CR - Del Buono, D. (2021). Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. Science of the Total Environment, 751, 141763. https://doi.org/10.1016/j.scitotenv.2020.141763 CR - Cordovilla, M. D. P., Ligero, F., & Lluch, C. (1999). Effect of salinity on growth, nodulation and nitrogen assimilation in nodules of faba bean (Vicia faba L.). Applied Soil Ecology, 11(1), 1–7. CR - Dębska, B., Długosz, J., & Piotrowska-Długosz, A. (2016). The impact of a bio-fertilizer on the soil organic matter status and carbon sequestration—Results from a field-scale study. Journal of Soils and Sediments, 16, 2335–2343. https://doi.org/10.1007/s11368-016-1430-5 CR - Del Pilar, C. M., Berrido, S. I., Ligero, F., & Lluch, C. (1999). Rhizobium strain effects on the growth and nitrogen assimilation in Pisum sativum and Vicia faba under salt stress. Journal of Plant Physiology, 154(1), 127–131. CR - Di Vaio, C., Testa, A., Cirillo, A., & Conti, S. (2021). Slow-release fertilization and Trichoderma harzianum-based biostimulant for the nursery production of young olive trees (Olea europaea L.). Agronomy, 19(3), 3. https://doi.org/10.15159/ar.21.143 CR - Dubey, R., & Misra, S. (2025). Biostimulants: An eco-friendly regulator of plant stress tolerance and sustainable solution to future agriculture. Proceedings of the Indian National Science Academy, 91(1), 60–67. CR - Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3–14. https://doi.org/10.1016/j.scienta.2015.09.021 CR - Ebert, A. W. (2020). The role of vegetable genetic resources in nutrition security and vegetable breeding. Plants, 9(6), 736. https://doi.org/10.3390/plants9060736 CR - Efthimiadou, A., Katsenios, N., Chanioti, S., Giannoglou, M., Djordjevic, N., & Katsaros, G. (2020). Effect of foliar and soil application of plant growth-promoting bacteria on growth, physiology, yield and seed quality of maize under Mediterranean conditions. Scientific Reports, 10, 21060 CR - Egamberdiyeva, D. (2009). Alleviation of salt stress by plant growth regulators and IAA-producing bacteria in wheat. Acta Physiologiae Plantarum, 31(4), 861–864. CR - ElBoukhari, M. E. M., Barakate, M., Bouhia, Y., & Lyamlouli, K. (2020). Trends in seaweed extract-based biostimulants: Manufacturing process and beneficial effects on soil–plant systems. Plants, 9, 359. https://doi.org/10.3390/plants9030359 CR - Elliott, J., Deryng, D., Müller, C., Frieler, K., Konzmann, M., Gerten, D., Glotter, M., Flörke, M., Wada, Y., & Best, N. (2014). Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences, 111(9), 3239–3244. https://doi.org/10.1073/pnas.1222474110 CR - Ertani, A., Cavani, L., Pizzeghello, D., Brandellero, E., Altissimo, A., Ciavatta, C., & Nardi, S. (2009). Biostimulant activity of two protein hydrolysates in the growth and nitrogen metabolism of maize seedlings. Journal of Plant Nutrition and Soil Science, 172(2), 237–244. https://doi.org/10.1002/jpln.200800174 CR - Ertani, A., Pizzeghello, D., Francioso, O., Sambo, P., Sánchez-Cortés, S., & Nardi, S. (2014). Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: Chemical and metabolomic approaches. Frontiers in Plant Science, 5, 502. CR - Florijančić, T., & Lužaić, R. (2009). Poljoprivredni Fakultet Sveučilišta Josipa Jurja Strossmayera u Osijeku. In Proceedings of the 44th Croatian and the 4th International Symposium of Agronomists, Opatija, Croatia, 16–20 February 2009. CR - Francesca, S., Arena, C., Mele, B. H., Schettini, C., Ambrosino, P., Barone, A., & Rigano, M. (2020). The use of a plant-based biostimulant improves plant performances and fruit quality in tomato plants grown at elevated temperatures. Agronomy, 3(10), 363. https://doi.org/10.3390/agronomy10030363 CR - Franzoni, G., Bulgari, R., & Ferrante, A. (2021). Maceration time affects the efficacy of borage extracts as potential biostimulant on rocket salad. Agronomy, 11(11), 2182. https://doi.org/10.3390/agronomy11112182 CR - García, A. C., Santos, L. A., Izquierdo, F. G., Sperandio, M. V. L., Castro, R. N., & Berbara, R. L. L. (2012). Vermicompost humic acids as an ecological pathway to protect rice plant against oxidative stress. Ecological Engineering, 47, 203–208. https://doi.org/10.1016/j.ecoleng.2012.06.011 CR - Colla, G., & Rouphael, Y. (2015). Biostimulants in horticulture. Scientia Horticulturae, 196, 1–2. https://doi.org/10.1016/j.scienta.2015.10.044 CR - Godlewska, K., Pacyga, P., Michalak, I., Biesiada, A., Szumny, A., Pachura, N., & Piszcz, U. (2021). Effect of botanical extracts on the growth and nutritional quality of field-grown white head cabbage (Brassica oleracea var. capitata). Molecules, 26(7), 1992. CR - Goñi, O., Quille, P., & O’Connell, S. (2018). Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant Physiology and Biochemistry, 126, 63–73. https://doi.org/10.1016/j.plaphy.2018.02.024 CR - Gonzálezgonzález, M. F., Ocampoalvarez, H., Santacruzruvalcaba, F., Sánchezhernández, C. V., Casarrubiascastillo, K., Becerrilespinosa, A., Castañeda Nava, J. J., & Hernándezherrera, R. M. (2020). Physiological, ecological and biochemical implications in tomato plants of two plant biostimulants: Arbuscular mycorrhizal fungi and seaweed extract. Frontiers in Plant Science, 11, 1–17. https://doi.org/10.3389/fpls.2020.00999 CR - Gopalakrishnan, S., Sathya, A., Vijayabharathi, R., Varshney, R. K., Gowda, C. L. L., & Krishnamurthy, L. (2015). Plant growth promoting rhizobia: Challenges and opportunities. 3 Biotech, 5(4), 355–377. https://doi.org/10.1007/s13205-015-0310-1 CR - Halpern M., et al. (2019). The use of biostimulants for enhancing nutrient uptake, abiotic stress tolerance and crop quality. Plant and Soil, 434(1-2), 1–19. CR - Halpern, M., Bar-Tal, A., Ofek, M., Minz, D., Muller, T., & Yermiyahu, U. (2015). Chapter two—The use of biostimulants for enhancing nutrient uptake. In D. L. Sparks (Ed.), Advances in Agronomy (pp. 141–174). Academic Press. https://doi.org/10.1016/bs.agron.2014.10.001 CR - Harman, G. E. (2000). Myths and dogmas of biocontrol: Changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Disease, 84(4), 377–393. https://doi.org/10.1094/PDIS.2000.84.4.377 CR - Hasanuzzaman, M., Nahar, K., & Fujita, M. (2013). Extreme temperature responses, oxidative stress and antioxidant defense in plants. In Abiotic Stress—Plant Responses and Applications in Agriculture (pp. 169–205). InTechOpen. https://dx.doi.org/10.5772/54833 CR - Heidari, M., & Golpayegani, A. (2012). Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). Journal of the Saudi Society of Agricultural Sciences, 11(1), 57–61. https://doi.org/10.1016/j.jssas.2011.09.001 CR - Imran, M., Mahmood, A., Römheld, V., & Neumann, G. (2013). Nutrient seed priming improves seedling development of maize exposed to low root zone temperatures during early growth. European Journal of Agronomy, 49, 141–148. https://doi.org/10.1016/j.eja.2013.04.001 CR - Jelačić, S., Beatović, D., & Lakić, N. (2007). Effect of natural biostimulators and slow-disintegrating fertilizers on the quality of sage nursery stock under different growing conditions. In Proceedings of the XXIst Conference of Agronomist, Veterinarians and Technologists (pp. 145–156). Ministry of Science and Environmental Protection, Novi Sad, Serbia. Available online: https://agris.fao.org/agris-search/search.do?recordID=RS2010001902 CR - Kałuzewicz, A., Krzesiński, W., Spizewski, T., & Zaworska, A. (2017). Effect of biostimulants on several physiological characteristics and chlorophyll content in broccoli under drought stress and re-watering. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 45(1), 197–202. https://doi.org/10.15835/nbha45110529 CR - Khalid, M. F., Huda, S., Yong, M., Li, L., Li, L., Chen, Z. H., & Ahmed, T. (2023). Alleviation of drought and salt stress in vegetables: crop responses and mitigation strategies. Plant Growth Regulation, 99(2), 177-194. CR - Kocira, A., Lamorska, J., Kornas, R., Nowosad, N., Tomaszewska, M., Leszczynska, D., Koztowicz, K., & Tabor, S. (2020). Changes in biochemistry and yield in response to biostimulants applied in bean (Phaseolus vulgaris L.). Agronomy, 10(2), 189. https://doi.org/10.3390/agronomy10020189 CR - Kołodziejczyk, I., Dzitko, K., Szewczyk, R., & Posmyk, M. M. (2016). Exogenous melatonin improves corn (Zea mays L.) embryo proteome in seeds subjected to chilling stress. Journal of Plant Physiology, 193, 47–56. https://doi.org/10.1016/j.jplph.2016.01.012 CR - Kołodziejczyk, I., Kaźmierczak, A., & Posmyk, M. M. (2021). Melatonin application modifies antioxidant defense and induces endoreplication in maize seeds exposed to chilling stress. International Journal of Molecular Sciences, 22(16), 8628. https://doi.org/10.3390/ijms22168628 CR - Kunicki, E., Grabowska, A., Sękara, A., & Wojciechowska, R. (2010). The effect of cultivar type, time of cultivation, and biostimulant treatment on the yield of spinach (Spinacia oleracea L.). Folia Horticulturae, 22(1), 9–13. https://doi.org/ 10.2478/fhort-2013-0153 CR - Martinez, V., Nieves-Cordones, M., Lopez-Delacalle, M., Rodenas, R., Mestre, T., Garcia-Sanchez, F., Rubio, F., Nortes, P., Mittler, R., & Rivero, R. (2018). Tolerance to stress combination in tomato plants: New insights in the protective role of melatonin. Molecules, 23(3), 535. https://doi.org/10.3390/molecules23030535 CR - Michalak, I., & Chojnacka, K. (2015). Algae as production systems of bioactive compounds. Engineering in Life Sciences, 15(2), 160–176. https://doi.org/10.1002/elsc.201400191 CR - Muhie, S., Memiş, N., Özdamar, C., Gökdaş, Z., & Demir, I. (2021). Biostimulant priming for germination and seedling quality of carrot seeds under drought, salt and high temperature stress conditions. International Journal of Agriculture Environment and Food Sciences, 5(3), 352-359. https://doi.org/10.31015/jaefs.2021.3.13 CR - Nahar, K., Hasanuzzaman, M., Alam, M. M., & Fujita, M. (2015). Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environmental and Experimental Botany, 112, 44–54. CR - Nardi, S., Pizzeghello, D., Schiavon, M., & Ertani, A. (2016). Plant biostimulants: Physiological responses induced by protein hydrolysate-based products. Scientia Agricola, 73(1), 18–23. https://doi.org/10.1590/0103-9016-2015-0006 CR - Norrie, J., & Keathley, J. P. (2006). Benefits of Ascophyllum nodosum marine-plant extract applications to ‘Thompson Seedless’ grape production. Acta Horticulturae, 709, 243–248. https://doi.org/10.17660/ActaHortic.2006.727.27 CR - Papenfus, H. B., Kulkarni, M. G., Stirk, W. A., Finnie, J. F., & Van Staden, J. (2013). Effect of a commercial seaweed extract (Kelpak®) and polyamines on nutrient-deprived (N, P and K) okra seedlings. Scientia Horticulturae (Amst.), 151, 142–146. https://doi.org/10.1016/j.scienta.2012.12.022 CR - Paradiković, N., Zeljković, S., Tkalec, M., Vinković, T., Maksimović, I., & Haramija, J. (2017). Influence of biostimulant application on growth, nutrient status and proline concentration of begonia transplants. Biological Agriculture & Horticulture, 33(2), 89–96. CR - Parađiković, N., Teklić, T., Zeljković, S., Lisjak, M., & Špoljarević, M. (2019). Biostimulants research in some horticultural plant species: A review. Food and Energy Security, 8(2), e00162. https://doi.org/10.1002/fes3.162 CR - Park, H. G., Lee, Y. S., Kim, K. Y., Park, Y. S., Park, K. H., Han, T. H., & Ahn, Y. S. (2017). Inoculation with Bacillus licheniformis MH48 promotes nutrient uptake in seedlings of the ornamental plant Camellia japonica grown in Korean reclaimed coastal lands. Horticultural Science & Technology, 35(1), 11–20. https://doi.org/10.7235/hort.20170002 CR - Paul, K., Sorrentino, M., Lucini, L., Rouphael, Y., Cardarelli, M., Bonini, P., Reynaud, H., Canaguier, R., Trtílek, M., Panzarová, K., et al. (2019). Understanding the biostimulant action of vegetal-derived protein hydrolysates by high-throughput plant phenotyping. Frontiers in Plant Science, 10, 47. https://doi.org/10.3389/fpls.2019.00047 CR - Petropoulos, S. A. (2020). Practical applications of plant biostimulants in greenhouse vegetable crop production. Agronomy, 10(10), 1569. https://doi.org/10.3390/agronomy10101569 CR - Pokluda, R., Sękara, A., Jezdinský, A., Kalisz, A., Neugebauerová, J., & Grabowska, A. (2016). The physiological status and stress biomarker concentration of Coriandrum sativum L. plants subjected to chilling are modified by biostimulant application. Biological Agriculture & Horticulture, 32(3), 258–268. https://doi.org/10.1080/01448765.2016.1172344 CR - Posmyk, M. M., Bałabusta, M., Wieczorek, M., Sliwinska, E., & Janas, K. M. (2009). Melatonin applied to cucumber (Cucumis sativus L.) seeds improves germination during chilling stress. Journal of Pineal Research, 46(2), 214–223. https://doi.org/10.1111/j.1600-079X.2008.00647.x CR - Posmyk, M. M., & Szafrańska, K. (2016). Biostimulators: A new trend towards solving an old problem. Frontiers in Plant Science, 7, 48. https://doi.org/10.3389/fpls.2016.00748 CR - Prisa, D., & Benati, A. (2021). Improving the quality of ornamental bulbous with plant growth-promoting rhizobacteria (PGPR). EPRA International Journal of Multidisciplinary Research (IJMR), 7(7), 2455–3662. CR - Rayirath, P., Benkel, B., Hodges, D. M., Allan-Wojtas, P., MacKinnon, S., Critchley, A. T., et al. (2009). Lipophilic components of the brown seaweed, Ascophyllum nodosum, enhance freezing tolerance in Arabidopsis thaliana. Planta, 230(1), 135–147. CR - Ren, X.-M., Guo, S.-J., Tian, W., Chen, Y., Han, H., Chen, E., Li, B.-L., Li, Y.-Y., & Chen, Z.-J. (2019). Effects of plant growth-promoting bacteria (PGPB) inoculation on the growth, antioxidant activity, Cu uptake, and bacterial community structure of rape (Brassica napus L.) grown in Cu-contaminated agricultural soil. Frontiers in Microbiology, 10, 1455. https://doi.org/10.3389/fmicb.2019.01455 CR - Romero, A. M., Vega, D., & Correa, O. S. (2014). Azospirillum brasilense mitigates water stress imposed by a vascular disease by increasing xylem vessel area and stem hydraulic conductivity in tomato. Applied Soil Ecology, 82, 38–43. https://doi.org/10.1016/j.apsoil.2014.05.010 CR - Rouphael, Y., & Colla, G. (2020). Biostimulants in agriculture. Frontiers in Plant Science, 11, 40. https://doi.org/10.3389/fpls.2020.00040 CR - Rouphael, Y., & Colla, G. (2018). Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Frontiers in Plant Science, 9, 1655. https://doi.org/10.3389/fpls.2018.01655 CR - Rukaitė, J., Juknevičius, D., Kriaučiūnienė, Z., & Šarauskis, E. (2024). Determination of soil organic carbon by conventional and spectral methods, including assessment of the use of biostimulants, N-fertilisers, and economic benefits. Journal of Agriculture and Food Research, 18, 101434. https://doi.org/10.1016/j.jafr.2024.101434 CR - Semida, W. M., Abd El-Mageed, T. A., Hemida, K., & Rady, M. M. (2019). Natural bee-honey based biostimulants confer salt tolerance in onion via modulation of the antioxidant defence system. Journal of Horticultural Science and Biotechnology, 94(1), 1–11. CR - Sesan, T. E., Oancea, A. O., Ștefan, L. M., Mãnoiu, V. S., Ghiurea, M., Rãut, I., Constantinescu-Aruxandei, D., Toma, Á., Savin, S., Bira, A. F., et al. (2020). Effects of foliar treatment with a Trichoderma plant biostimulant consortium on Passiflora caerulea L. yield and quality. Microorganisms, 8(1), 123. https://doi.org/10.3390/microorganisms8010123 CR - Sezen, I., Kaymak, H. Ç., Aytatlý, B., Dönmez, M. F., & Ercişli, S. (2014). Inoculations with plant growth promoting rhizobacteria (PGPR) stimulate adventitious root formation on semi-hardwood stem cuttings of Ficus benjamina L. Propagating Ornamental Plants, 14(3), 152–157. CR - Sharma, H. S. S., Fleming, C., Selby, C., Rao, J. R., & Martin, T. (2014). Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. Journal of Applied Phycology, 26(2), 465–490. CR - Solankey, S. S., Kumari, M., Akhtar, S., Singh, H. K., & Ray, P. K. (2021). Challenges and opportunities in vegetable production in changing climate: Mitigation and adaptation strategies. In Advances in Research on Vegetable Production Under a Changing Climate (Vol. 1, pp. 13–59). CR - Subramanian, P., Kim, K., Krishnamoorthy, R., Mageswari, A., Selvakumar, G., & Sa, T. (2016). Cold stress tolerance in psychrotolerant soil bacteria and their conferred chilling resistance in tomato (Solanum lycopersicum Mill.) under low temperatures. PLoS ONE, 11(9), e0161592. https://doi.org/10.1371/journal.pone.0161592 CR - Subramanian, P., Mageswari, A., Kim, K., Lee, Y., & Sa, T. (2015). Psychrotolerant endophytic Pseudomonas sp. strains OB155 and OS261 induced chilling resistance in tomato plants (Solanum lycopersicum Mill.) by activation of their antioxidant capacity. Molecular Plant-Microbe Interactions, 28(10), 1073–1081. https://doi.org/10.1094/MPMI-03-15-0061-R CR - Tan, U., & Gören, H. K. (2024). Effects of harvest time and plant part on essential oils, phenolics, and antioxidant activity in Lippia citriodora. International Journal of Agriculture Environment and Food Sciences, 8(4), 986-993. https://doi.org/10.31015/jaefs.2024.4.28 CR - Trevisan, S., Francioso, O., Quaggiotti, S., & Nardi, S. (2010). Humic substances biological activity at the plant-soil interface: From environmental aspects to molecular factors. Plant Signaling & Behavior, 5(6), 635–643. CR - Verkleij, F. N. (1992). Seaweed extracts in agriculture and horticulture: A review. Biological Agriculture & Horticulture, 8(4), 309–324. https://doi.org/10.1080/01448765.1992.9754608 CR - Vernieri, P., Borghesi, E., & Ferrante, A. (2005). Application of biostimulants in floating system for improving rocket quality. Journal of Food, Agriculture & Environment, 3(2), 86–90. CR - Vernieri, P., Borghesi, E., Tognoni, F., Serra, G., Ferrante, A., & Piaggesi, A. (2006). Use of biostimulants for reducing nutrient solution concentration in floating system. Acta Horticulturae, 718, 477–484. https://doi.org/10.17660/ActaHortic.2006.718.55 CR - Viégas, R. A., da Silveira, J. A. G., Lima, A. R. D. Jr., Queiroz, J. E., & Fausto, M. J. M. (2006). Effects of NaCl-salinity on growth and inorganic solute accumulation in young cashew plants. Revista Brasileira de Engenharia Agrícola e Ambiental, 5(2), 216–222. https://doi.org/10.1590/S1415-43662006000200010 CR - Vujošević, A., Lakić, N., Beatović, D., & Jelačić, S. (2007). Effect of applying different rates of slow-disintegrating fertilizer on the quality of marigold (Tagetes patula L.) and scarlet sage (Salvia splendens L.) seedlings. Journal of Agricultural Sciences (Belgrade), 52(2), 105–113. https://doi.org/10.2298/JAS0702105V CR - Xu, C., & Leskovar, D. I. (2015). Effects of Ascophyllum nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Scientia Horticulturae (Amst.), 183, 39–47. https://doi.org/10.1016/j.scienta.2014.12.004 CR - Xu, L., & Geelen, D. (2018). Developing biostimulants from agro-food and industrial by-products. Frontiers in Plant Science, 9, 1567. https://doi.org/10.3389/fpls.2018.01567 CR - Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., & Brown, P. H. (2017). Biostimulants in plant science: A global perspective. Frontiers in Plant Science, 7, 2049. https://doi.org/10.3389/fpls.2016.02049 CR - Yaronskaya, E., Vershilovskaya, I., Poers, Y., Alawady, A. E., Averina, N., & Grimm, B. (2006). Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. Planta, 224(4), 700–709. https://doi.org/10.1007/s00425-006-0249-5 CR - Zhang, W., Xia, K., Feng, Z., Qin, Y., Zhou, Y., Feng, G., Zhu, H., & Yao, Q. (2024). Tomato plant growth promotion and drought tolerance conferred by three arbuscular mycorrhizal fungi is mediated by lipid metabolism. Plant Physiology and Biochemistry, 208, 108478. https://doi.org/10.1016/j.plaphy.2024.108478 UR - https://doi.org/10.31015/2025.si.8 L1 - https://dergipark.org.tr/en/download/article-file/5096061 ER -