TY - JOUR T1 - Weddle's Inequality via Katugampola Fractional Integrals AU - El-achky, Jamal PY - 2025 DA - December Y2 - 2025 DO - 10.32323/ujma.1752277 JF - Universal Journal of Mathematics and Applications JO - Univ. J. Math. Appl. PB - Emrah Evren KARA WT - DergiPark SN - 2619-9653 SP - 179 EP - 194 VL - 8 IS - 4 LA - en AB - Integral inequalities represent an important and ongoing area of study in mathematical understanding. Due to their extensive use in science, fractional calculus approaches have been the subject of a great deal of research recently. An important concept in fractional calculus is the Katugampola fractional integral. In this work, we aim to investigate Weddle's type integral inequalities involving the Katugampola integral operators for functions whose first derivatives are convex. In order to accomplish this, we first suggest a novel integral identity. We develop several new fractional Weddle-like type inequalities using this identity. Special means and quadrature formula applications are given. KW - Convex function KW - Katugampola fractional integrals KW - Weddle inequality CR - [1] PJ. Davis, P. Rabinowitz, Methods of Numerical Integration, Academic Press, New York, 1975. CR - [2] Q. Liu, M. Z. Javed, M. U. Awan, Y. Wang, A. M. Zidan, Weddle’s inequalities in fractional space, Ain Shams Eng. J., 16(10) (2025), Article ID 103550. https://doi.org/10.1016/j.asej.2025.103550 CR - [3] A. Mateen, H. Budak, A. Kashuri, Z. Zhang, Comprehensive study of Weddle’s formula-type inequalities for convex functions within the framework of quantum calculus and their computational analysis, J. Inequal. Appl., 2025 (2025), Article ID 64. https://doi.org/10.1186/s13660-025-03311-9 CR - [4] B. Benaissa, N. Azzouz, Hermite-Hadamard-Fejer type inequalities for h-convex functions involving Ψ-Hilfer operators, J. Inequal. Math. Anal., 1(2) (2025), 113-123. https://doi.org/10.63286/jima.015 CR - [5] B. Meftah, D. Benchettah, A. Lakhdari, Some new local fractional Newton-type inequalities, J. Inequal. Math. Anal., 1(2) (2025), 79-96. https://doi.org/10.63286/jima.008 CR - [6] I. Podlubny, Fractional Differential Equations, Math. Sci. Eng., Academic Press, San Diego, CA, 1999. https://doi.org/10.1016/s0076-5392(99)x8001-5 CR - [7] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Amsterdam, 1993. CR - [8] A. Mateen, Z. Zhang, H. Budak, S. Özcan, Some novel inequalities of Weddle’s formula type for Riemann–Liouville fractional integrals with their applications to numerical integration, Chaos Solitons Fractals, 192 (2025), Article ID 115973. https://doi.org/10.1016/j.chaos.2024.115973 CR - [9] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequ. Math., 48 (1994), 100-111. https://doi.org/10.1007/BF01837981 CR - [10] A. Mateen, B. Bin-Mohsin, G. H. Tipu, A. Shehzadi, Error estimation of Weddle’s rule for generalized convex functions with applications to numerical integration and computational analysis, Mathematics, 13(17) (2025), Article ID 2874. https://doi.org/10.3390/math13172874 CR - [11] F. Jarad, E. Uğurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ.Equ., 2017 (2017), Article ID 247. https://doi.org/10.1186/s13662-017-1306-z CR - [12] A. R. DiDonato, M. P. Jarnagin, The efficient calculation of the incomplete beta-function ratio for half-integer values of the parameters a,b, Math. Comput., 21 (1967), 652-662. https://doi.org/10.1090/S0025-5718-1967-0221730-X CR - [13] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud., Vol. 204, Elsevier Science B.V., Amsterdam, 2006. https://doi.org/10.1016/S0304-0208(06)80001-0 CR - [14] A. Lakhdari, N. Mlaiki, W. Saleh, T. Abdeljawad, B. Meftah, Exploring conformable fractional integral inequalities: A multi-parameter approach, Fractals, 33(7) (2025), Article ID 2550055. https://doi.org/10.1142/S0218348X25500550 CR - [15] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218(3) (2011), 860–865. https://doi.org/10.1016/j.amc.2011.03.062 CR - [16] D. Boucenna, A. B. Makhlouf, M. A. Hammami, On Katugampola fractional order derivatives and Darboux problem for differential equations, Cubo., 22(1) (2020), 125-136. http://dx.doi.org/10.4067/S0719-06462020000100125 CR - [17] H. Chen, U. N. Katugampola, Hermite–Hadamard and Hermite–Hadamard–Fejer type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446(2) (2017), 1274-1291. https://doi.org/10.1016/j.jmaa.2016.09.018 CR - [18] U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6(4) (2014), 1–15. CR - [19] S. Kermausuor, Simpson’s type inequalities via the Katugampola fractional integrals for s-convex functions, Kragujevac J. Math., 45(5) (2021), 709–720. CR - [20] B. Y. Xi, F. Qi, Inequalities of Hermite-Hadamard type for extended s-convex functions and applications to means, J. Nonlinear Convex Anal., 16(5) (2015), 873–890. CR - [21] A. Lakhdari, H. Budak, M. U. Awan, B. Meftah, Extension of Milne-type inequalities to Katugampola fractional integrals, Bound. Value Probl., 2024 (2024), Article ID 100. https://doi.org/10.1186/s13661-024-01909-4 CR - [22] I. Iscan, Ostrowski type inequalities for p-convex functions, New Trends Math. Sci., 4 (2016), 140–150. CR - [23] Y. Yu, H. Lei, G. Hu, T. Du, Estimates of upper bound for differentiable mappings related to Katugampola fractional integrals and p-convex mappings, AIMS Math., 6(4) (2021), 3525-3545. https://doi.org/10.3934/math.2021210 CR - [24] B. Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for $s$-logarithmically convex functions, Acta Math. Sci. Engl. Ser., 35A(3) (2015), 515–526. https://doi.org/10.13140/RG.2.1.4385.9044 CR - [25] D. Ai, T. Du, A study on Newton-type inequalities bounds for twice ∗differentiable functions under multiplicative Katugampola fractional integrals, Fractals, 33(5) (2025), Article ID 2550032. https://doi.org/10.1142/S0218348X2550032X CR - [26] W. Saleh, B. Meftah, M. U. Awan, A. Lakhdari, On Katugampola fractional multiplicative Hermite-Hadamard-type inequalities, Mathematics, 13(10) (2025), Article ID 1575. https://doi.org/10.3390/math13101575 CR - [27] G. Hu, H. Lei, T. S. Du, Some parameterized integral inequalities for p-convex mappings via the right Katugampola fractional integrals, AIMS Math., 5(2) (2020), 1425-1445. https://doi.org/10.3934/math.2020098 CR - [28] C. E. M. Pearce, J. Pečarić, Inequalities for differentiable mappings with application to special means and quadrature formula, Appl. Math. Lett., 13(2) (2000), 51-55. https://doi.org/10.1016/S0893-9659(99)00164-0 UR - https://doi.org/10.32323/ujma.1752277 L1 - https://dergipark.org.tr/en/download/article-file/5096509 ER -