TY - JOUR T1 - A note on conformable fractional Newton-type inequalities via functions of bounded variation AU - Hezenci, Fatih AU - Sarıışık, Mehmet AU - Budak, Hüseyin PY - 2025 DA - November Y2 - 2025 JF - Düzce Mathematical Research PB - Duzce University WT - DergiPark SN - 3108-5741 SP - 11 EP - 21 VL - 1 IS - 1 LA - en AB - In this paper, we establish an equality in order to obtain conformable fractional Newton-type inequalities. Moreover, we prove some Newton-type inequalities associated with conformable fractional operators for functions of bounded variation. Furthermore, some results are presented by using special choices of the obtained inequalities. KW - Conformable fractional integrals KW - functions of bounded variations KW - Newton-type inequalities CR - [1] S. Gao, W. Shi (2012), On new inequalities of Newton’s type for functions whose second derivatives absolute values are convex, Int. J. Pure Appl. Math., 74(1), 33–41. CR - [2] S. Erden, S. Iftikhar, P. Kumam, P. Thounthong (2020), On error estimations of Simpson’s second type quadrature formula, Math. Methods Appl. Sci., 47(13), 11232–11244. https://doi.org/10.1002/mma.7019 CR - [3] M.A. Ali, H. Budak, Z. Zhang (2022), A new extension of quantum Simpson’s and quantum Newton’s type inequalities for quantum differentiable convex functions, Math. Methods Appl. Sci., 45(4), 1845–1863. https://doi.org/10.1002/mma.7889 CR - [4] M.A. Noor, K.I. Noor, S. Iftikhar (2016), Some Newton’s type inequalities for harmonic convex functions, J. Adv. Math. Stud., 9(1), 07–16. CR - [5] M.A. Noor, K.I. Noor, S. Iftikhar (2018), Newton inequalities for p-harmonic convex functions, Honam Math. J., 40(2), 239–250. https://dx.doi.org/10.5831/HMJ.2018.40.2.239 CR - [6] S. Iftikhar, P. Kumam, S. Erden (2020), Newton’s-type integral inequalities via local fractional integrals, Fractals, 28(03), 2050037. https://doi.org/10.1142/S0218348X20500371 CR - [7] S. Iftikhar, S. Erden, M.A. Ali, J. Baili, H. Ahmad (2022), Simpson’s second-type inequalities for co-ordinated convex functions and applications for cubature formulas, Fractal Fract., 6(1), 33. https://doi.org/10.3390/fractalfract6010033 CR - [8] M.A. Noor, K.I. Noor, M.U. Awan (2015), Some Newton’s type inequalities for geometrically relative convex functions, Malaysian J. Math. Sci., 9(3), 491–502. CR - [9] M.Z. Sarıkaya, E. Set, H. Yaldız, N. Başak (2013), Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modelling, 57, 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 CR - [10] R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, Springer Verlag, Wien, 1997. CR - [11] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006. CR - [12] T. Sitthiwirattham, K. Nonlaopon, M.A. Ali, H. Budak (2022), Riemann-Liouville fractional Newton’s type inequalities for differentiable convex functions, Fractal Fract. 6(3), 175. https://doi.org/10.3390/fractalfract6030175 CR - [13] S. Erden, S. Iftikhar, P. Kumam, M.U. Awan (2020), Some Newton’s like inequalities with applications, RACSAM Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Mat., 114(4), 1–13. https://doi.org/10.1007/s13398-020-00926-z CR - [14] F. Hezenci, H. Budak (2025), Fractional Newton-type integral inequalities by means of various function classes, Math. Methods Appl. Sci., 48(1), 1198–1215. https://doi.org/10.1002/mma.10378 CR - [15] S. Iftikhar, S. Erden, P. Kumam, M.U. Awan (2020), Local fractional Newton’s inequalities involving generalized harmonic convex functions, Adv. Difference Equ., 2020(1), 1–14. https://doi.org/10.1186/s13662-020-02637-6 CR - [16] F. Hezenci, H. Budak, P. Kösem (2023), A new version of Newton’s inequalities for Riemann-Liouville fractional integrals, Rocky Mountain J. Math., 53(1), 49–64. https://doi.org/10.1216/rmj.2023.53.49 CR - [17] F. Hezenci, H. Budak (2023), Some perturbed Newton type inequalities for Riemann-Liouville fractional integrals, Rocky Mountain J. Math., 53(4), 1117–1127. https://doi.org/10.1216/rmj.2023.53.1117 CR - [18] V.V. Uchaikin, Fractional derivatives for physicists and engineers, Springer: Berlin/Heidelberg, Germany, 2013. CR - [19] G.A. Anastassiou, Generalized fractional calculus: New advancements and applications, Springer: Switzerland, 2021. CR - [20] N. Attia, A. Akgül, D. Seba, A. Nour (2020), An efficient numerical technique for a biological population model of fractional order, Chaos, Solitons & Fractals, 141, 110349. https://doi.org/10.1016/j.chaos.2020.110349 CR - [21] A. Gabr, A.H. Abdel Kader, M.S. Abdel Latif (2021), The effect of the parameters of the generalized fractional derivatives on the behavior of linear electrical circuits, Int. J. Appl. Comput. Math., 7, 247. https://doi.org/10.1007/s40819-021-01160-w CR - [22] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh (2014), A new definition of fractional derivative, J. Comput. Appl. Math., 264, 65–70. https://doi.org/10.1016/j.cam.2014.01.002 CR - [23] A.A. Abdelhakim (2019), The flaw in the conformable calculus: It is conformable because it is not fractional, Fract. Calc. Appl. Anal., 22, 242–254. https://doi.org/10.1515/fca-2019-0016 CR - [24] D. Zhao, M. Luo (2017), General conformable fractional derivative and its physical interpretation, Calcolo, 54, 903–917. https://doi.org/10.1007/s10092-017-0213-8 CR - [25] A. Hyder, A.H. Soliman (2020), A new generalized q-conformable calculus and its applications in mathematical physics, Phys. Scr., 96, 015208. https://doi.org/10.1088/1402-4896/abc6d9 CR - [26] F. Jarad, E. Uğurlu, T. Abdeljawad, D. Baleanu (2017), On a new class of fractional operators, Adv. Difference Equ., 2017, 247. https://doi.org/10.1186/s13662-017-1306-z CR - [27] T. Abdeljawad (2015), On conformable fractional calculus, J. Comput. Appl. Math., 279, 57–66. https://doi.org/10.1016/j.cam.2014.10.016 CR - [28] H. Budak, C. Ünal, F. Hezenci (2024), A study on error bounds for Newton-type inequalities in conformable fractional integrals, Math. Slovaca, 74(2), 313–330. https://doi.org/10.1515/ms-2024-0024 CR - [29] F. Hezenci, P. Karagözoglu, H. Budak, Some error bounds for Newton formula in conformable fractional operators, submitted. CR - [30] M.W. Alomari (2012), A companion of Dragomir’s generalization of Ostrowski’s inequality and applications in numerical integration, Ukrainian Math. J., 64, 435–450. UR - https://dergipark.org.tr/en/pub/dmr/issue//1752712 L1 - https://dergipark.org.tr/en/download/article-file/5098414 ER -