TY - JOUR T1 - Dirihlet problem for the generalized Beltrami equation AU - Gökgöz, Pelin Ayşe PY - 2025 DA - June Y2 - 2025 DO - 10.26650/ijmath.2025.00022 JF - Istanbul Journal of Mathematics PB - Istanbul University WT - DergiPark SN - 2980-3020 SP - 12 EP - 19 VL - 3 IS - 1 LA - en AB - In this article, we investigate the Dirichlet problem for the generalized Beltrami equation. Firstly, we introduce the solutions of the Dirichlet problem for the inhomogeneous Cauchy-Riemann equation in the unit disc. Secondly, we state the properties of the integral operators for regular domains. Then, by using Banach fixed point theorem, we obtain the existence of the unique solution of the Dirichlet problem for the generalized Beltrami equation in the unit disc. KW - Dirichlet problem KW - Unit disc KW - Generalized Beltrami equation KW - Banach fixed point theorem CR - Aksoy, Ü., Çelebi, A.O., 2012, Dirichlet problem for a generalized inhomogeneous polyharmonic equation in an annular domain, Complex Variables and Elliptic Equations, 57 2-4, 229-241. google scholar CR - Aksoy, Ü., Çelebi, A.O., 2010, Dirichlet problems for generalized /¡-Poisson equation, Oper. Theory Adv. Appl. 205, 129-142. google scholar CR - Begehr, H., 2005a, Boundary value problems in complex analysis I, Boletin de la Asociacion Matematica Venezolana, 12-1, 65-85. google scholar CR - Begehr, H., 2005b, Boundary value problems in complex analysis II. Boletin de la Asociacion Matematica Venezolana, 12-2, 217-250. google scholar CR - Begehr, H., Shupeyeva, B., 2021, Polyanalytic boundary value problems for planar domains with harmonic Green function, Analysis and Mathematical Physics, 11, 137. google scholar CR - Begehr, H.G.W., 1994, Complex Analytic Methods for Partial Differential Equations: An introductory text, World Scientific, Singapore. google scholar CR - Begehr, H., Vaitekhovich, T., 2012, Harmonic Dirichlet problem for some equilateral triangle, Complex Variables and Elliptic Equations, 57, 185-196. google scholar CR - Begehr, H., Gaertner, E., 2007, Dirichlet problem for the inhomogeneous polyharmonic equation in the upper half plane, Georgian Math J. 14, 33-52. google scholar CR - Begehr, H., Hile, G.N., 1997, A hierarchy of integral operators, Rocky Mountain J. Math. 27, 669-706. google scholar CR - Begehr, H., Harutyunyan, G., 2009, Neumann problem for the Beltrami operator and for second order operators with Poisson/Bitsadze operator as main part, Complex Variables and Elliptic Equations 54-12, 1129-1150. google scholar CR - Begehr, H., Obolashvili, E., 1994, Some boundary value problems for a Beltrami equation. Complex Variables and Elliptic Equations, 26, 1-2, 113-122. google scholar CR - Begehr, H., Vaitekhovich, T., 2007, Complex partial differential equations in a manner of I. N. Vekua. Lecture Notes of TICMI, 8, 15–26. google scholar CR - Gökgöz, P.A., 2024a, Dirichlet boundary value problem for linear polyanalytic equation in upper half plane, Complex Variables and Elliptic Equations, 70-4, 549–554. google scholar CR - Gökgöz, P.A., 2024b, Dirichlet Problem for Nonlinear Higher-Order Equations in Upper Half Plane, Complex Analysis and Operator Theory 18, 121. google scholar CR - Harutyunyan, G., 2007, Boundary value problems for the Beltrami operator, Complex Variables and Elliptic Equations, 52-6, 475-484. google scholar CR - Tutschke, W., 1983, Partielle Differentialgleichungen - Klassiche, Funktionalanalytische und Komplexe Methoden, Teubner Texte zur Mathematics, Band 27, B.G. Teubner, Leipzig. google scholar CR - Vaitsiakhovich, T., 2008a, Boundary Value Problems for Complex Partial Differential Equations in a Ring Domain [Ph.D. thesis], Freie Universitat Berlin. google scholar CR - Vaitekhovich, T.S., 2008b, Boundary value problems to first-order complex partial differential equations, Integral Transforms and Special Functions, 19, 211-233. google scholar CR - Vaitekhovich, T., 2007, Boundary value problems to second order complex partial differential equations in a ring domain, Siauliai Mathematical Seminar, 2-10, 117-146. google scholar CR - Vekua, I.N., 1962, Generalized Analytic Functions. Pergamon Press, Oxford. google scholar CR - Yüksel, U., 2010, A Schwarz problem for the generalized Beltrami equation, Complex Variables and Elliptic Equations, 56-6, 503–511. google scholar CR - Wang, Y., Du, J., 2015, Harmonic Dirichlet problem in a ring sector. In: Current trends in analysis and its applications: Trends Math. Cham, Switzerland 67-75. google scholar UR - https://doi.org/10.26650/ijmath.2025.00022 L1 - https://dergipark.org.tr/en/download/article-file/5108399 ER -