TY - JOUR T1 - Exploring the bioactive potential of peptides derived from the RuBisCO protein in Caulerpa racemosa: an in silico approach AU - Windarto, Seto AU - Herawati, Vivi Endar AU - Wijaya, Yusuf Jati AU - Indriati, Dyah Ayu PY - 2025 DA - August Y2 - 2025 DO - 10.38042/biotechstudies.1756936 JF - Biotech Studies JO - Biotech Studies PB - Tarla Bitkileri Merkez Araştırma Enstitüsü WT - DergiPark SN - 2687-3761 SP - 71 EP - 85 VL - 34 IS - 2 LA - en AB - Caulerpa racemosa harbors a rich reservoir of bioactive peptides derived from RuBisCO, a photosynthetic enzyme with promising therapeutic potential. This study aimed to systematically identify and characterize bioactive peptides from C. racemosa RuBisCO using a multi-step in silico pipeline. Simulated proteolysis using 33 enzymes predicted peptides with 35 different biological activities using BIOPEP-UWM. In addition to traditional database screening, further computational filtering was conducted using physicochemical profiling (ExPASy ProtParam), bioactivity prediction (PeptideRanker), toxicity and allergenicity evaluation (ToxinPred, AllergenFP), and structure-based molecular docking against relevant therapeutic targets—angiotensin-I converting enzyme (ACE, PDB: 1O8A) and xanthine oxidase (XO, PDB: 3NRZ). Four peptides with high predicted bioactivity scores (>0.75) showed strong binding affinity (−169.00 to −252.29 kcal/mol) and favorable confidence scores, suggesting their possible use as dual-action therapeutic agents—with both antihypertensive and antioxidant effects. This integrative in silico approach demonstrates the therapeutic relevance of C. racemosa peptides and provides a framework for peptide prioritization prior to experimental validation. KW - Bioinformatics KW - Computational KW - Proteomics KW - Seagrapes CR - Adams, C., Sawh, F., Green-Johnson, J., Jones Taggart, H., & Strap, J. (2020). Characterization of casein-derived peptide bioactivity: Differential effects on angiotensin-converting enzyme inhibition and cytokine and nitric oxide production. Journal of Dairy Science, 103(7), 5805-5815. https://doi.org/10.3168/jds.2019-17976 CR - Akbarian, M., Khani, A., Eghbalpour, S., & Uversky, V. N. (2022). Bioactive Peptides: Synthesis, Sources, Applications, and Proposed Mechanisms of Action. International Journal of Molecular Sciences, 23(3). https://doi.org/10.3390/ijms23031445 CR - Amin, M., Chondra, U., Mostafa, E., & Alam, M. (2021). Green seaweed Ulva lactuca, a potential source of bioactive peptides revealed by in silico analysis. Informatics in Medicine Unlocked, 33, 101099. https://doi.org/10.1016/j.imu.2022.101099 CR - Andreatta, R. H., H. Liem, R. K., & Scheraga, H. A. (1971). Mechanism of Action of Thrombin on Fibrinogen, I. Synthesis of Fibrinogen-like Peptides, and Their Proteolysis by Thrombin and Trypsin. Proceedings of the National Academy of Sciences of the United States of America, 68(2), 253-256. https://doi.org/10.1073/pnas.68.2.253 CR - Baharuddin, N. A., Halim, N. R. A., & Sarbon, N. M. (2016). Effect of degree of hydrolysis (DH) on the functional properties and angiotensin I-converting enzyme (ACE) inhibitory activity of eel (Monopterus sp.) protein hydrolysate. International Food Research Journal, 23(4), 1424-1431. CR - Bhat, Z. F., Kumar, S., & Bhat, H. F. (2015). Bioactive peptides of animal origin: A review. Journal of Food Science and Technology, 52(9), 5377-5392. https://doi.org/10.1007/s13197-015-1731-5 CR - Capurso, G., Traini, M., Piciucchi, M., Signoretti, M., & Arcidiacono, P.G. (2019). Exocrine pancreatic insufficiency: prevalence, diagnosis, and management. Clinical and Experimental Gastroenterology, 12:129-139. https://doi.org/10.2147/CEG.S168266 CR - Cermeño, M., Kleekayai, T., Amigo-Benavent, M., Harnedy-Rothwell, P., & FitzGerald, R.J. (2020). Current knowledge on the extraction, purification, identification, and validation of bioactive peptides from seaweed. Electrophoresis, 41(20), 1694–717. https://doi.org/10.1002/elps.202000153. CR - Contreras, M.delM., Gómez-Sala, B., Martín-Alvarez, P. J., Amigo, L., Ramos, M., & Recio, I. (2010). Monitoring the large-scale production of the antihypertensive peptides RYLGY and AYFYPEL by HPLC-MS. Analytical and bioanalytical chemistry, 397(7), 2825–2832. https://doi.org/10.1007/s00216-010-3647-2 CR - Coscueta, E. R., Batista, P., Gomes, J. E., da Silva, R., & Pintado, M. M. (2022). Screening of novel bioactive peptides from goat casein: In silico to in vitro validation. International Journal of Molecular Sciences, 23(5), 2439. https://doi.org/10.3390/ijms23052439 CR - Daliri, E.B., Oh, D.H., & Lee, B.H. (2017). Bioactive Peptides. Foods, 26, 6(5):32. https://doi.org/10.3390/foods6050032. CR - Dimitrov, I., Naneva, L., Doytchinova, I., & Bangov, I. (2014). AllergenFP: Allergenicity prediction by descriptor fingerprints. Bioinformatics, 30(6), 846-851. https://doi.org/10.1093/bioinformatics/btt619 CR - Du, Z., & Li, Y. (2022). Review and perspective on bioactive peptides: A roadmap for research, development, and future opportunities. Journal of Agriculture and Food Research, 9, 100353. https://doi.org/10.1016/j.jafr.2022.100353 CR - Ducrocq, M., Boire, A., Anton, M., Micard, V., & Morel, M. (2020). RuBisCO: A promising plant protein to enrich wheat-based food without impairing dough viscoelasticity and protein polymerisation. Food Hydrocolloids, 109, 106101. https://doi.org/10.1016/j.foodhyd.2020.106101 CR - Erdmann, K., Cheung, B. W., & Schröder, H. (2008). The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. The Journal of Nutritional Biochemistry, 19(10), 643-654. https://doi.org/10.1016/j.jnutbio.2007.11.010 CR - Garcia-Vaquero, M., Meaney, S., & Tiwari, B. K. (2022). Bioactive Peptides from Algae: Traditional and Novel Generation Strategies, Structure-Function Relationships, and Bioinformatics as Predictive Tools for Bioactivity. Marine Drugs, 20(5). https://doi.org/10.3390/md20050317 CR - Grácio, M., Oliveira, S., Lima, A., & Boavida Ferreira, R. (2023). RuBisCO as a protein source for potential food applications: A review. Food Chemistry, 419, 135993. https://doi.org/10.1016/j.foodchem.2023.135993 CR - Graszkiewicz, A., Żelazko, M., & Trziszka, T. (2010). Application of pancreatic enzymes in hydrolysis of egg-white proteins. Polish Journal of Food and Nutrition Sciences, 60(1), 57-61. CR - Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., Drug Discovery Consortium, O. S., & Raghava, G. P. S. (2013). In Silico Approach for Predicting Toxicity of Peptides and Proteins. PLOS ONE, 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957 CR - Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogaro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4, 17. https://doi.org/10.1186/1758-2946-4-17 CR - Hirata, H., Sonoda, S., Agui, S., Yoshida, M., Ohinata, K., & Yoshikawa, M. (2007). Rubiscolin-6, a δ opioid peptide derived from spinach Rubisco, has anxiolytic effect via activating σ1 and dopamine D1 receptors. Peptides, 28, 1998–2003. https://doi.org/10.1016/j.peptides.2007.07.024 CR - Hirota, T., Ohki, K., Kawagishi, R., Kajimoto, Y., Mizuno, S., Nakamura, Y., & Kitakaze, M. (2007). Casein hydrolysate containing the antihypertensive tripeptides Val-Pro-Pro and Ile-Pro-Pro improves vascular endothelial function independent of blood pressure-lowering effects: contribution of the inhibitory action of angiotensin-converting enzyme. Hypertension research: official journal of the Japanese Society of Hypertension, 30(6), 489–496. https://doi.org/10.1291/hypres.30.489 CR - Hsiao, N. W., Tseng, T. S., Lee, Y. C., Chen, W. C., Lin, H. H., Chen, Y. R., Wang, Y. T., Hsu, H. J., & Tsai, K. C. (2014). Serendipitous discovery of short peptides from natural products as tyrosinase inhibitors. Journal of chemical information and modeling, 54(11), 3099–3111. https://doi.org/10.1021/ci500370x CR - Ito, K., Hosoya, T., Yamazaki-Ito, T., Terada, Y., & Kawarasaki, Y. (2021). Dipeptidyl peptidase IV inhibitory dipeptides contained in hydrolysates of green tea grounds. Journal of Food Technology Research, 27(2), 329-334. https://doi.org/10.3136/fstr.27.329 CR - Kang, A., Kim, J., Jin, K., & Choi, J. (2023). Antioxidant, Collagenase Inhibitory, and Antibacterial Effects of Bioactive Peptides Derived from Enzymatic Hydrolysate of Ulva australis. Marine Drugs, 21(9), 469. https://doi.org/10.3390/md21090469 CR - Karami, Z., & Akbari-adergani, B. (2019). Bioactive food derived peptides: A review on correlation between structure of bioactive peptides and their functional properties. Journal of Food Technology Research, 56(2), 535-547. https://doi.org/10.1007/s13197-018-3549-4 CR - Karlsson, I., Samuelsson, K., Ponting, D. J., Törnqvist, M., Ilag, L. L., & Nilsson, U. (2016). Peptide Reactivity of Isothiocyanates – Implications for Skin Allergy. Scientific Reports, 6(1), 1-12. https://doi.org/10.1038/srep21203 CR - Kaur, A., Pati, P.K., Pati, A.M., & Nagpal, A.K. (2020). Physico-chemical characterization and topological analysis of pathogenesis-related proteins from Arabidopsis thaliana and Oryza sativa using in-silico approaches. PLoS ONE, 15(9): e0239836. https://doi.org/10.1371/journal.pone.0239836 CR - Kose, A. (2021). In Silico Bioactive Peptide Prediction from The Enzymatic Hydrolysates of Edible Seaweed RuBisCO Large Chain. Turkish Journal of Fisheries and Aquatic Sciences, 21, 615-625. http://doi.org/10.4194/1303-2712-v21_12_04 CR - Langyan, S., Khan, F. N., Yadava, P., Alhazmi, A., Mahmoud, S. F., Saleh, D. I., & Kee Zuan, A. T. (2021). In silico proteolysis and analysis of bioactive peptides from sequences of fatty acid desaturase 3 (FAD3) of flaxseed protein. Saudi Journal of Biological Sciences, 28(10), 5480-5489. https://doi.org/10.1016/j.sjbs.2021.08.027 CR - Meng, Y., Zhang, X., Mezei, M., & Cui, M. (2011). Molecular Docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146. https://doi.org/10.2174/157340911795677602 CR - Minkiewicz, P., Iwaniak, A., & Darewicz, M. (2019). BIOPEP-UWM Database of Bioactive Peptides: Current Opportunities. International Journal of Molecular Sciences, 20(23). https://doi.org/10.3390/ijms20235978 CR - Mostashari, P., Marszałek, K., Aliyeva, A., & Mousavi Khaneghah, A. (2022). The Impact of Processing and Extraction Methods on the Allergenicity of Targeted Protein Quantification as Well as Bioactive Peptides Derived from Egg. Molecules, 28(6), 2658. https://doi.org/10.3390/molecules28062658 CR - Nakamura, Y., Yamamoto, N., Sakai, K., Okubo, A., Yamazaki, S., & Takano, T. (1995). Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk. Journal of dairy science, 78(4), 777–783. https://doi.org/10.3168/jds.S0022-0302(95)76689-9 CR - Natesh, R., Schwager, S., Sturrock, E, Acharya, K. R. (2003). Crystal structure of the human angiotensin-converting enzyme–lisinopril complex. Nature 421, 551–554 (2003). https://doi.org/10.1038/nature01370 CR - Ngo, D., Wijesekara, I., Vo, T., Van Ta, Q., & Kim, S. (2011). Marine food-derived functional ingredients as potential antioxidants in the food industry: An overview. Food Research International, 44(2), 523-529. https://doi.org/10.1016/j.foodres.2010.12.030 CR - Nawaz, M. A., Kasote, D. M., Ullah, N., Usman, K., & Alsafran, M. (2024). RuBisCO: A sustainable protein ingredient for plant-based foods. Frontiers in Sustainable Food Systems, 8, 1389309. https://doi.org/10.3389/fsufs.2024.1389309 CR - Okamoto, K., Matsumoto, K., Hille, R., Eger, B. T., Pai, E. F., & Nishino, T. (2004). The crystal structure of xanthine oxidoreductase during catalysis: implications for reaction mechanism and enzyme inhibition. Proceedings of the National Academy of Sciences of the United States of America, 101(21), 7931–7936. https://doi.org/10.1073/pnas.0400973101 CR - Ornano, L., Donno, Y., Sanna, C., Ballero, M., Serafini, M., & Bianco, A. (2014). Phytochemical study of Caulerpa racemosa (Forsk.) J. Agarth, an invading alga in the habitat of La Maddalena Archipelago. Natural Product Research, 28(20), 1795-9. https://doi.org/10.1080/14786419.2014.945928 CR - Purohit, K., Reddy, N., & Sunna, A. (2023). Exploring the Potential of Bioactive Peptides: From Natural Sources to Therapeutics. International Journal of Molecular Sciences, 25(3), 1391. https://doi.org/10.3390/ijms25031391 CR - Roney, M., & Aluwi, M. F. F. M. (2024). The importance of in-silico studies in drug discovery. Intelligent Pharmacy. https://doi.org/10.1016/j.ipha.2024.01.010 CR - Roshanak, S., Yarabbi, H., Shahidi, F., Tabatabaei Yazdi, F., Movaffagh, J., & Javadmanesh, A. (2023). Effects of adding poly-histidine tag on stability, antimicrobial activity and safety of recombinant buforin I expressed in periplasmic space of Escherichia coli. Scientific Report, 13(1), 1-16. https://doi.org/10.1038/s41598-023-32782-3 CR - Sbroggio, M.F., Montilha, M.S, Figueiredo, Vrg De., Georgetti, S.R, & Kurozawa, L. (2016). Influence of the degree of hydrolysis and type of enzyme on antioxidant activity of okara protein hydrolysates. Food Science and Technology, 36, 375–81. https://doi.org/10.1590/1678-457X.000216. CR - Seppo, L., Jauhiainen, T., Poussa, T., & Korpela, R. (2003). A fermented milk high in bioactive peptides has a blood pressure–lowering effect in hypertensive subjects. The American Journal of Clinical Nutrition, 77(2), 326-330. https://doi.org/10.1093/ajcn/77.2.326 CR - Shao, Y., Zhang, Y., Liu, J., & Tu, Z. (2021). Investigation into predominant peptide and potential allergenicity of ultrasonicated β-lactoglobulin digestion products. Food Chemistry, 361, 130099. https://doi.org/10.1016/j.foodchem.2021.130099 CR - Stefano, E. D., Agyei, D., Njoku, E. N., & Udenigwe, C. C. (2018). Plant RuBisCO: An Underutilized Protein for Food Applications. Journal of the American Oil Chemists' Society, 95(8), 1063-1074. https://doi.org/10.1002/aocs.12104 CR - Stennicke, H. R., & Breddam, K. (2012). Glutamyl Endopeptidase II. Handbook of Proteolytic Enzymes, 2556-2558. https://doi.org/10.1016/B978-0-12-382219-2.00566-4 CR - Thiviya, P., Gamage, A., Suranjith, N., Merah, O., & Madhujith, T. (2022). Seaweeds as a Source of Functional Proteins. Phycology, 2(2), 216-243. https://doi.org/10.3390/phycology2020012 CR - Udenigwe, C. C., & Aluko, R. E. (2012). Food protein-derived bioactive peptides: production, processing, and potential health benefits. Journal of food science, 77(1), R11–R24. https://doi.org/10.1111/j.1750-3841.2011.02455.x CR - Udenigwe, C. C., Okolie, C. L., Qian, H., Ohanenye, I. C., Agyei, D., & Aluko, R. E. (2017). Ribulose-1,5-bisphosphate carboxylase as a sustainable and promising plant source of bioactive peptides for food applications. Trends in Food Science & Technology, 69, 74-82. https://doi.org/10.1016/j.tifs.2017.09.001 CR - Valegård, K., Andralojc, P.J., Haslam, R.P., Pearce, F.G., Eriksen, G.K., Madgwick, P.J., Kristoffersen, A.K., van Lun, M., Klein, U., Eilertsen, H.C., Parry, M.A.J., & Andersson, I. (2018). Structural and functional analyses of Rubisco from arctic diatom species reveal unusual posttranslational modifications. Journal of Biological Chemistry, 293(34), 13033-13043. https://doi.org//10.1074/jbc.RA118.003518 CR - Wei, L., Ye, X., Sakurai, T., Mu, Z., & Wei, L. (2022). ToxIBTL: Prediction of peptide toxicity based on information bottleneck and transfer learning. Bioinformatics, 38(6), 1514-1524. https://doi.org/10.1093/bioinformatics/btac006 CR - Windarto, S., Lee, M.C., Nursyam, H., & Hsu, J.L. (2022). First Report of Screening of Novel Angiotensin-I Converting Enzyme Inhibitory Peptides Derived from the Red Alga Acrochaetium sp. Marine Biotechnology, 24(5), 882-894. https://doi.org/10.1007/s10126-022-10152-w. CR - Windarto, S., M. Kamaludin, D., Bella, W., Sarjito, Pinandoyo, Susilowati, T., Haditomo, A. H. C., & Harwanto, D. (2023). Effect of coconut (Cocos nucifera) water, and aqueous extract of Mung bean (Vigna radiata) sprouts and Moringa (Moringa oleifera) leaf on the growth and nutrition of Caulerpa racemosa. International Journal of Aquatic Biology, 11(6), 513–522. https://doi.org/10.22034/ijab.v11i6.2044 CR - Windarto, S., Hsu, J., & Lee, M. (2024a). First report of antioxidant potential of peptide fraction derived from Colaconema formosanum (Rhodophyta) protein hydrolysates. Biocatalysis and Agricultural Biotechnology, 58, 103232. https://doi.org/10.1016/j.bcab.2024.103232 CR - Windarto, S., Lee, M., Nursyam, H., & Hsu, J. (2024b). A novel phycoerythrin-derived peptide from Colaconema formosanum: Synthesis, in vitro, and in silico study on angiotensin-converting enzyme (ACE) inhibitory activity. Biocatalysis and Agricultural Biotechnology, 62, 103452. https://doi.org/10.1016/j.bcab.2024.103452 CR - Windarto, S., Susilowati, T., Haditomo, A.H.C., & Harwanto, D. (2024c). Effect of exogenous natural plant growth regulators (PGRs) on the morphology, growth, and nutrient of sea grapes (Caulerpa racemosa). Aquaculture International, 32, 3545–3562. https://doi.org/10.1007/s10499-023-01337-8 CR - Yan, Y., Zhang, D., Zhou, P., Li, B., & Huang, S. Y. (2017). HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic acids research, 45(W1), W365–W373. https://doi.org/10.1093/nar/gkx407 CR - Yan, Y., Tao, H., He, J., Huang, S. Y. (2020). The HDOCK server for integrated protein–protein docking. Nature Protocols, 15, 1829–1852. https://doi.org/10.1038/s41596-020-0312-x CR - Zhao, Z., Gui, J., Yao, A., Khanh Le, N. Q., & Heng Chua, M. C. (2022). Improved Prediction Model of Protein and Peptide Toxicity by Integrating Channel Attention into a Convolutional Neural Network and Gated Recurrent Units. ACS Omega, 7(44), 40569-40577. https://doi.org/10.1021/acsomega.2c05881 CR - Zloh, M., & Kirton, S. B. (2018). The Benefits of In Silico Modeling to Identify Possible Small-Molecule Drugs and Their Off-Target Interactions. Future Medicinal Chemistry, 10(4), 423–432. https://doi.org/10.4155/fmc-2017-0151 UR - https://doi.org/10.38042/biotechstudies.1756936 L1 - https://dergipark.org.tr/en/download/article-file/5116831 ER -