TY - JOUR T1 - Development of Mucoadhesive Nanofiber Platform Using Eudragit® E100 for Vaginal Application AU - Tuğcu Demiröz, Fatma Nur AU - Saar, Sinem AU - Acarturk, Fusun PY - 2025 DA - September Y2 - 2025 DO - 10.52794/hujpharm.1764755 JF - Hacettepe University Journal of the Faculty of Pharmacy JO - HUJPHARM PB - Hacettepe University WT - DergiPark SN - 2458-8806 SP - 245 EP - 254 VL - 45 IS - 3 LA - en AB - Electrospun nanofibers represent an excellent alternative to classical vaginal dosage forms due to flexibility, high loading capacity, high mucoadhesive strength and enhanced patient compliance. Eudragit®s, which are synthetic polymers composed of methacrylate monomers, are preferred for vaginal drug delivery. The aim of this study was to develop and evaluate Eudragit®-based nanofiber formulations for vaginal drug delivery. Nanofibers were fabricated using electrospinning. Eudragit® E100 at varying polymer concentrations dissolved in an ethanol:dimethylformamide mixture (7:3, v/v). The polymer solutions were characterized in terms of surface tension, viscosity, and electrical conductivity. Thermal behavior of both the raw polymer and the nanofiber formulations was analyzed using Differential Scanning Calorimetry. Surface wettability was assessed by contact angle measurements using an optical tensiometer. The mechanical strength and mucoadhesive properties of the nanofibers were evaluated using a texture analyzer. The viscosity, surface tension and conductivity of the polymer solutions were found to be suitable for electrospinning. All formulations had hydrophobic properties. Mechanical properties of formulations were increased with increasing polymer concentration. Formulation E4 exhibited the highest mucoadhesion value among all tested formulations, clearly demonstrating to adhere to the mucosal surface. It was seen that Eudragit-based formulations may be a potential platform for vaginal application. KW - Electrospinning KW - Nanofiber KW - Vaginal drug delivery KW - Eudragit CR - 1. Subi MTM, Nandhakumar S, Vasanthi HR. Vaginal drug delivery system: A promising route of drug administration for local and systemic diseases. Drug Discov. Today. 2024:104012. https://doi.org/10.1517/17425247.2011.600119 CR - 2. Yu T, Malcolm K, Woolfson D, Jones DS, Andrews GP. Vaginal gel drug delivery systems: understanding rheological characteristics and performance. Expert Opin. Drug Deliv. 2011;8(10):1309-22. https://doi.org/10.1517/17425247.2011.600119 CR - 3. Ensign LM, Cone R, Hanes J. Nanoparticle-based drug delivery to the vagina: a review. J. Control. Release. 2014;190:500-14. https://doi.org/10.1016/j.jconrel.2014.04.033 CR - 4. Cazorla-Luna R, Ruiz-Caro R, Veiga M-D, Malcolm RK, Lamprou DA. Recent advances in electrospun nanofiber vaginal formulations for women's sexual and reproductive health. Int. J. Pharm. 2021;607:121040. https://doi.org/10.1016/j.ijpharm.2021.121040 CR - 5. Tuğcu-Demiröz F, Saar S, Kara AA, Yıldız A, Tunçel E, Acartürk F. Development and characterization of chitosan nanoparticles loaded nanofiber hybrid system for vaginal controlled release of benzydamine. Eur. J. Pharm. Sci. 2021;161:105801. https://doi.org/10.1016/j.ejps.2021.105801 CR - 6. Tort S, Han D, Frantz E, Steckl AJ. Controlled drug release of parylene-coated pramipexole nanofibers for transdermal applications. Surf. Coat. Technol. 2021;409:126831. https://doi.org/10.1016/j.surfcoat.2021.126831 CR - 7. Blakney AK, Ball C, Krogstad EA, Woodrow KA. Electrospun fibers for vaginal anti-HIV drug delivery. Antiviral Res. 2013;100:S9-S16. https://doi.org/10.1016/j.antiviral.2013.09.022 CR - 8. Minooei F, Gilbert NM, Zhang L, Sarah Necamp M, Mahmoud MY, Kyser AJ, et al. Rapid-dissolving electrospun nanofibers for intra-vaginal antibiotic or probiotic delivery. Eur. J. Pharm. Biopharm. 2023;190:81-93. https://doi.org/10.1016/j.ejpb.2023.07.009 CR - 9. Vidyadhari A, Singh AK, Ralli T, Parvez S, Kohli K. Drug-loaded electrospun nanofiber for Vulvovaginal candidiasis: A systematic literature review. Clin. Epidemiol. Glob. Health. 2023;24:101420. https://doi.org/10.1016/j.cegh.2023.101420 CR - 10. Pradhan M, Basha NS, Sahu KK, Yadav K, Dubey A, Pradhan HK, Kirubakaran J. Engineering Nanofibers for Cutaneous Drug Delivery Systems and Therapeutic Applications. Med. Nov. Technol. Devices. 2025:100386. https://doi.org/10.1016/j.medntd.2025.100386 CR - 11. Yıldız A, Kara AA, Acartürk F. Peptide-protein based nanofibers in pharmaceutical and biomedical applications. Int. J. Biol. Macromol. 2020;148:1084-97. https://doi.org/10.1016/j.ijbiomac.2019.12.275 CR - 12. Tuğcu-Demiröz F, Saar S, Tort S, Acartürk F. Electrospun metronidazole-loaded nanofibers for vaginal drug delivery. Drug Dev. Ind. Pharm. 2020;46(6):1015-25. https://doi.org/10.1080/03639045.2020.1767125 CR - 13. Wang C, Wang W, Qi H, Dai Y, Jiang S, Ding B, et al. Electrospinning and electrospun nanofibers: From academic research to industrial production. Prog. Mater. Sci. 2025:101494. https://doi.org/10.1016/j.pmatsci.2025.101494 CR - 14. Saar S, Demiröz FNT. Evaluation of Mechanical and Mucoadhesive Properties of Polyvinyl Alcohol Nanofibers As Vaginal Drug Delivery System. FABAD J. Pharm. Sci. 2023;48(2):219-30. https://doi.org/10.55262/fabadeczacilik.1268029 CR - 15. Xing J, Zhang M, Liu X, Wang C, Xu N, Xing D. Multi-material electrospinning: from methods to biomedical applications. Mater. Today Bio. 2023;21:100710. https://doi.org/10.1016/j.mtbio.2023.100710 CR - 16. Turanlı Y, Tort S, Acartürk F. Development and characterization of methylprednisolone loaded delayed release nanofibers. J. Drug Deliv. Sci. Technol. 2019;49:58-65. https://doi.org/10.1016/j.jddst.2018.10.031 CR - 17. Chen H, Su J, Brennan CS, Van Der Meeren P, Zhang N, Tong Y, Wang P. Recent developments of electrospun zein nanofibres: Strategies, fabrication and therapeutic applications. Mater. Today Adv. 2022;16:100307. https://doi.org/10.1016/j.mtadv.2022.100307 CR - 18. Ataei M, Afrasiabi Garekani H, Alizadeh Sani M, Julian Mcclements D, Sadeghi F. Evaluation of polyvinyl pyrrolidone nanofibers for encapsulation, protection, and release of curcumin: Impact on in vitro bioavailability. J. Mol. Liq. 2024;397:124115. https://doi.org/10.1016/j.molliq.2024.124115 CR - 19. Krogstad EA, Ramanathan R, Nhan C, Kraft JC, Blakney AK, Cao S, et al. Nanoparticle-releasing nanofiber composites for enhanced in vivo vaginal retention. Biomaterials. 2017;144:1-16. https://doi.org/10.1016/j.biomaterials.2017.07.034 CR - 20. Singhal P. Preparation and characterization of poly (E-CAPROLACTONE) nano fibers by electrospinning technique for tissue enginerring applications. Mater. Today Proc. 2021;37:2997-3001. https://doi.org/10.1016/j.matpr.2020.08.716 CR - 21. Aranaz I, Alcántara AR, Civera MC, Arias C, Elorza B, Heras Caballero A, Acosta N. Chitosan: An Overview of Its Properties and Applications. Polymers. 2021;13(19):3256. https://doi.org/10.3390/polym13193256 CR - 22. Satchanska G, Davidova S, Petrov PD. Natural and Synthetic Polymers for Biomedical and Environmental Applications. Polymers. 2024;16(8):1159. https://doi.org/10.3390/polym16081159 CR - 23. Gonciarz W, Balcerczak E, Brzeziński M, Jeleń A, Pietrzyk-Brzezińska AJ, Narayanan VHB, Chmiela M. Chitosan-based formulations for therapeutic applications. A recent overview. J. Biomed. Sci. 2025;32(1). https://doi.org/10.1186/s12929-025-01161-7 CR - 24. Bolívar-Monsalve EJ, Alvarez MM, Hosseini S, Espinosa-Hernandez MA, Ceballos-González CF, Sanchez-Dominguez M, et al. Engineering bioactive synthetic polymers for biomedical applications: a review with emphasis on tissue engineering and controlled release. Mater. Adv. 2021;2(14):4447-78. https://doi.org/10.1039/d1ma00092f CR - 25. Xue J, Wu T, Dai Y, Xia Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019;119(8):5298-415. https://doi.org/10.1021/acs.chemrev.8b00593 CR - 26. Reddy MSB, Ponnamma D, Choudhary R, Sadasivuni KK. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers. 2021;13(7):1105. https://doi.org/10.3390/polym13071105 CR - 27. Nikam A, Sahoo PR, Musale S, Pagar RR, Paiva-Santos AC, Giram PS. A Systematic Overview of Eudragit® Based Copolymer for Smart Healthcare. Pharmaceutics. 2023;15(2):587. https://doi.org/10.3390/pharmaceutics15020587 CR - 28. Yoo J-W, Giri N, Lee CH. pH-sensitive Eudragit nanoparticles for mucosal drug delivery. Int. J. Pharm. 2011;403(1-2):262-7. https://doi.org/10.1016/j.ijpharm.2010.10.032 CR - 29. Patra CN, Priya R, Swain S, Kumar Jena G, Panigrahi KC, Ghose D. Pharmaceutical significance of Eudragit: A review. Future J. Pharm. Sci. 2017;3(1):33-45. https://doi.org/10.1016/j.fjps.2017.02.001 CR - 30. Alasino RV, Leonhard V, Bianco ID, Beltramo DM. Eudragit E100 surface activity and lipid interactions. Colloids Surf. B Biointerfaces. 2012;91:84-9. https://doi.org/10.1016/j.colsurfb.2011.10.041 CR - 31. Baranauskaite J, Adomavičiūtė E, Jankauskaitė V, Marksa M, Barsteigienė Z, Bernatoniene J. Formation and investigation of electrospun Eudragit E100/oregano mats. Molecules. 2019;24(3):628. https://doi.org/10.3390/molecules24030628 CR - 32. Turanlı Y, Acartürk F. Fabrication and characterization of budesonide loaded colon-specific nanofiber drug delivery systems using anionic and cationic polymethacrylate polymers. J. Drug Deliv. Sci. Technol. 2021;63:102511. https://doi.org/10.1016/j.jddst.2021.102511 CR - 33. Małolepsza-Jarmołowska K, Kubis A. Studies on gynaecological hydrophilic lactic acid preparations. Part 3: Effects of chitosan on the properties of methylcellulose gels. Die Pharmazie. 2000;55(8):610-1. CR - 34. Vedha Hari B, Narayanan N, Dhevedaran K. Efavirenz–eudragit E-100 nanoparticle-loaded aerosol foam for sustained release: In-vitro and ex-vivo evaluation. Chem. Pap. 2015;69(2):358-67. https://doi.org/10.1515/chempap-2015-0005 CR - 35. Chinnappan BA, Krishnaswamy M, Xu H, Hoque ME. Electrospinning of biomedical nanofibers/nanomembranes: Effects of process parameters. Polymers. 2022;14(18):3719. https://doi.org/10.3390/polym14183719 CR - 36. Turanlı Y, Birer M, Birer YT, Uyar R, Dikmen BY, Acartürk F. Oral fast-dissolving risperidone loaded electrospun nanofiber drug delivery systems for antipsychotic therapy. J. Drug Deliv. Sci. Technol. 2024;92:105262. https://doi.org/10.1016/j.jddst.2023.105262 CR - 37. Rüzgar G, Birer M, Tort S, Acartürk F. Studies on improvement of water-solubility of curcumin with electrospun nanofibers. FABAD J. Pharm. Sci. 2013;38(3):143. CR - 38. Gajewski A. A couple new ways of surface tension determination. Int. J. Heat Mass Transf. 2017;115:909-17. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.050 CR - 39. Birer M, Kara AA, Yurdakok-Dikmen B, Uyar R, Aralan G, Birer YT, et al. Electrospun hesperidin nanofibers induce a cytoprotective effect on sodium-fluoride induced oxidative stress in vitro. J. Drug Deliv. Sci. Technol. 2024;92:105388. https://doi.org/10.1016/j.jddst.2024.105388 CR - 40. Birer M, Acartürk F. Telmisartan loaded polycaprolactone/gelatin-based electrospun vascular scaffolds. Int. J. Polym. Mater. Polym. Biomater. 2022;71(11):858-73. https://doi.org/10.1080/00914037.2021.1915785 CR - 41. Tort S, Yıldız A, Tuğcu-Demiröz F, Akca G, Kuzukıran Ö, Acartürk F. Development and characterization of rapid dissolving ornidazole loaded PVP electrospun fibers. Pharm. Dev. Technol. 2019;24(7):864-73. https://doi.org/10.1080/10837450.2019.1615088 CR - 42. Tort S, Acartürk F. Preparation and characterization of electrospun nanofibers containing glutamine. Carbohydr. Polym. 2016;152:802-14. https://doi.org/10.1016/j.carbpol.2016.07.028 CR - 43. Tuğcu-Demiröz F, Acartürk F, Erdoğan D. Development of long-acting bioadhesive vaginal gels of oxybutynin: Formulation, in vitro and in vivo evaluations. Int. J. Pharm. 2013;457(1):25-39. https://doi.org/10.1016/j.ijpharm.2013.09.003 CR - 44. Rüzgar Özemre G, Kara AA, Pezik E, Tort S, Vural İ, Acartürk F. Preparation of nanodelivery systems for oral administration of low molecular weight heparin. J. Drug Deliv. Sci. Technol. 2023;79:104068. https://doi.org/10.1016/j.jddst.2022.104068 CR - 45. Al-Abduljabbar A, Farooq I. Electrospun polymer nanofibers: processing, properties, and applications. Polymers. 2022;15(1):65. https://doi.org/10.3390/polym15010065 CR - 46. Sánchez-Cid P, Rubio-Valle JF, Jiménez-Rosado M, Pérez-Puyana V, Romero A. Effect of solution properties in the development of cellulose derivative nanostructures processed via electrospinning. Polymers. 2022;14(4):665. https://doi.org/10.3390/polym14040665 CR - 47. Pillay V, Dott C, Choonara YE, Tyagi C, Tomar L, Kumar P, et al. A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J. Nanomater. 2013;2013(1):789289. https://doi.org/10.1155/2013/789289 CR - 48. Linares V, Yarce CJ, Echeverri JD, Galeano E, Salamanca CH. Relationship between degree of polymeric ionisation and hydrolytic degradation of Eudragit® E polymers under extreme acid conditions. Polymers. 2019;11(6):1010. https://doi.org/10.3390/polym11061010 CR - 49. Riaz U, Ashraf SM. Characterization of Polymer Blends with FTIR Spectroscopy. Wiley-VCH Verlag GmbH & Co. KGaA; 2014. p. 625-78. https://doi.org/10.1002/9783527645602.ch20 CR - 50. Vlachou M, Kikionis S, Siamidi A, Kyriakou S, Tsotinis A, Ioannou E, Roussis V. Development and characterization of Eudragit®-based electrospun nanofibrous mats and their formulation into nanofiber tablets for the modified release of furosemide. Pharmaceutics. 2019;11(9):480. https://doi.org/10.3390/pharmaceutics11090480 CR - 51. Jeganathan B, Prakya V. Interpolyelectrolyte Complexes of Eudragit® EPO with Hypromellose Acetate Succinate and Eudragit® EPO with Hypromellose Phthalate as Potential Carriers for Oral Controlled Drug Delivery. AAPS PharmSciTech. 2015;16(4):878-88. https://doi.org/10.1208/s12249-014-0252-2 CR - 52. Alharbi N, Daraei A, Lee H, Guthold M. The effect of molecular weight and fiber diameter on the mechanical properties of single, electrospun PCL nanofibers. Mater. Today Commun. 2023;35:105773. https://doi.org/10.1016/j.mtcomm.2023.105773 CR - 53. Ding Y, Dou C, Chang S, Xie Z, Yu D-G, Liu Y, Shao J. Core–shell eudragit s100 nanofibers prepared via triaxial electrospinning to provide a colon-targeted extended drug release. Polymers. 2020;12(9):2034. https://doi.org/10.3390/polym12092034 CR - 54. Abdel-Rahman LM, Eltaher HM, Abdelraouf K, Bahey-El-Din M, Ismail C, Kenawy E-RS, El-Khordagui LK. Vancomycin-functionalized Eudragit-based nanofibers: Tunable drug release and wound healing efficacy. J. Drug Deliv. Sci. Technol. 2020;58:101812. https://doi.org/10.1016/j.jddst.2020.101812 CR - 55. Pérez-González GL, Villarreal-Gómez LJ, Serrano-Medina A, Torres-Martínez EJ, Cornejo-Bravo JM. Mucoadhesive electrospun nanofibers for drug delivery systems: applications of polymers and the parameters’ roles. Int. J. Nanomed. 2019:5271-85. https://doi.org/10.2147/IJN.S193328 CR - 56. Cazorla-Luna R, Notario-Pérez F, Martín-Illana A, Bedoya L-M, Tamayo A, Rubio J, et al. Development and In Vitro-Ex Vivo Characterization of Vaginal Mucoadhesive Bilayer Films Based on Ethylcellulose and Biopolymers for Vaginal Sustained Release of Tenofovir. Biomacromolecules. 2020;21(6):2309-19. https://doi.org/10.1021/acs.biomac.0c00249 CR - 57. Tuğcu-Demiröz F. Vaginal delivery of benzydamine hydrochloride through liposomes dispersed in mucoadhesive gels. Chem. Pharm. Bull. 2017;65(7):660-7. ttps://doi.org/10.1248/cpb.c17-00133 CR - 58. Müller L, Rosenbaum C, Rump A, Grimm M, Klammt F, Kleinwort A, et al. Determination of Mucoadhesion of Polyvinyl Alcohol Films to Human Intestinal Tissue. Pharmaceutics. 2023;15(6):1740. https://doi.org/10.3390/pharmaceutics15061740 CR - 59. Thirawong N, Nunthanid J, Puttipipatkhachorn S, Sriamornsak P. Mucoadhesive properties of various pectins on gastrointestinal mucosa: An in vitro evaluation using texture analyzer. Eur. J. Pharm. Biopharm. 2007;67(1):132-40. https://doi.org/10.1016/j.ejpb.2007.01.010 UR - https://doi.org/10.52794/hujpharm.1764755 L1 - https://dergipark.org.tr/en/download/article-file/5152937 ER -