TY - JOUR T1 - Antimycobacterial activity of the secondary metabolite fraction derived from endophytic bacterium Bacillus velezensis strain DJ4 isolated from Archidendron pauciflorum AU - Priyanto, Jepri Agung AU - Sinarawadi, Genia Sotya AU - Prastya, Muhammad Eka AU - Tachrim, Zetryana Puteri PY - 2025 DA - September Y2 - 2024 DO - 10.12991/jrespharm.1766279 JF - Journal of Research in Pharmacy JO - J. Res. Pharm. PB - Marmara University WT - DergiPark SN - 2630-6344 SP - 2055 EP - 2063 VL - 29 IS - 5 LA - en AB - The discovery and development of new antituberculosis medications effective against multidrug-resistant Mycobacterium strains are necessary to reduce the mortality in tuberculosis (TB) cases. To accelerate the discovery of anti- TB drugs, Mycobacterium smegmatis was commonly used as a surrogate bacterium in the preliminary screening of antituberculosis compounds. This study aimed to fractionate the secondary metabolites of the endophytic bacterium Bacillus velezensis strain DJ4 isolated from Archidendron pauciflorum, to evaluate its antimycobacterial activity against M. smegmatis, and to identify the secondary metabolite profile of its active fraction. Fifty-six fractions were successfully obtained through thin-layer chromatography (TLC) and column chromatography techniques. Among all fractions, ten fractions showed remarkable antimycobacterial activity against M. smegmatis with minimum inhibitory concentration (MIC) values ranging from 85–1,325 μg/ml. Fraction F53 exhibited the strongest antimycobacterial activity with the lowest MIC of 85 μg/ml. This fraction also inhibited the biofilm formation of M. smegmatis at 1× MIC and ½× MIC by 62,3%, and 52,1%, respectively. Observation using a scanning electron microscope (SEM) showed that the biofilm matrix of M. smegmatis treated with fraction F53 was thinner, less compact, and separated into small pieces compared to the negative control. Furthermore, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed that this corresponding fraction contained five proposed compounds, including 2-(p-anisyl)-5-methyl-1-hexene, nigakilactone H, tetratriacontanamine, and two other unidentified compounds. KW - Antimycobacterial KW - Archidendron pauciflorum KW - fractionation KW - MIC KW - Mycobacterium smegmatis CR - [1] WHO Global tuberculosis report 2023. https://iris.who.int/bitstream/handle/10665/373828/9789240083851- eng.pdf?sequence=1 (accessed on 7 March 2024). CR - [2] Yagi A, Uchida R, Hamamoto H, Sekimizu K, Kimura K, Tomoda H. Anti-Mycobacterium activity of microbial peptides in a silkworm infection model with Mycobacterium smegmatis. J Antibiot. 2017;. 70(1): 685-690. https://doi.org/10.1038/ja.2017.23 CR - [3] Mpeirwe M, Taremwa IM, Orikriza P, Ogwang PE, Ssesazi D, Bazira J. Anti-mycobacterial activity of medicinal plant extracts used in the treatment of tuberculosis by traditional medicine practitioners in Uganda. Pharmacol Pharm. 2023; 14(2): 33-42. https://doi.org/10.4236/pp.2023.142003 CR - [4] Kumar A, Chettiar S, Parish T. Current challenges in drug discovery for tuberculosis. Expert Opin Drug Discov. 2017; 12(1):1-4. https://doi.org/10.1080/17460441.2017.1255604 CR - [5] Tuyiringire N, Mugisha IT, Tusubira D, Munyampundu J, Muvunyi CM, Heyden YV. In vitro antimycobacterial activity of medicinal plants Lantana camara, Cryptolepis sanguinolenta, and Zanthoxylum leprieurii. J Clin Tuberc Other Mycobact Dis. 2022; 27(1): 100307. https://doi.org/10.1016/j.jctube.2022.100307 CR - [6] Bazargani MM, Rohloff J. Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control. 2016; 61: 156-164. https://doi.org/10.1016/j.foodcont.2015.09.036 CR - [7] Bhunu B, Mautsa R, Mukanganyama S. 2017. Inhibition of biofilm formation in Mycobacterium smegmatis by Parinari curatellifolia leaf extracts. BMC Complement Altern Med. 2017; 17(1): 285. https://doi.org/10.1186/s12906- 017- 1801-5 CR - [8] Mombeshora M, Chi GF, Mukanganyama S. Antibiofilm activity of extract and a compound isolated from Triumfetta welwitschii against Pseudomonas aeruginosa. Biochem Res Int. 2021; 2021:9946183. https://doi.org/10.1155/2021/9946183 CR - [9] Singh S, Singh SK, Chowdhury I, Singh R. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol J. 2017; 11(1): 53-62. https://doi.org/10.2174/1874285801711010053 CR - [10] Saini P, Gangwar M, Kalia A, Singh N, Narang D. Isolation of endophytic actinomycetes from Syzygium cumini and their antimicrobial activity against human pathogens. J Appl Nat Sci. 2016; 8(1): 416 422. https://doi.org/10.31018/jans.v8i1.809. CR - [11] Sharma A, Malhotra B, Kharkwal H, Kulkarni GT, Kaushik N. Therapeutic agents from endophytes harbored in Asian medicinal plants. Phytochem Rev. 2020; 19: 691-720. https://doi.org/10.1007/s11101-020-09683-8 CR - [12] Priyanto JA, Prastya ME, Astuti RI, Kristiana R. The antibacterial and antibiofilm activities of the endophytic bacteria associated with Archidendron pauciflorum against multidrug-resistant strains. Appl Biochem Biotechnol. 2023; 195: 6653-6674. https://doi.org/10.1007/s12010-023-04382-4 CR - [13] Priyanto JA, Astuti RI, Prastya ME. Bioprospeksi Bacillus spp. endofit asal tanaman jengkol: potensi anti- Mycobacterium dan karakterisasi genom lengkapnya. Laporan Akhir Penelitian Dosen Muda 2023, IPB University, 2023. CR - [14] Yuliastri WO, Diantini A, Ghozali M, Sahidin I, Isrul M. Phytochemical constituent and in-vitro cytotoxic activity of Hibiscus sabdariffa L. calyx fraction on human breast cancer cell line MDA-MB-231. Rasayan J Chem. 2022; 15(3): 1619-1625. https://doi.org/10.31788/RJC.2022.1536694 CR - [15] Jiménez MAA, Cruz AZ, Belmares SYS, Valdés JAA, Rivera CAS. Phytochemical and biological characterization of the fractions of the aqueous and ethanolic extracts of Parthenium hysterophorus. Separations. 2022; 9(11): 359. https://doi.org/10.3390/separations9110359 CR - [16] Solis-Salas LM, Sierra-Rivera CA, Cobos-Puc LE, Ascacio-Valdés JA, Silva- Belmares SY. Antibacterial potential by rupture membrane and antioxidant capacity of purified phenolic fractions of Persea americana leaf extract. Antibiotics (Basel). 2021;10(5):508. https://doi.org/10.3390/antibiotics10050508 CR - [17] Silva AC, Santana EF, Saraiva AM, Coutinho FN, Castro RH, Pisciottano MN, Amorim EL, Albuquerque UP. Which approach is more effective in the selection of plants with antimicrobial activity? Evid Based Complement Alternat Med. 2013;2013:308980. https://doi.org/10.1155/2013/308980 CR - [18] Hardie KR, Fenn SJ. JMM profile: rifampicin: A broad-spectrum antibiotic. J Med Microbiol. 2022; 71(8): 1-5. https://doi.org/10.1099/jmm.0.001566 CR - [19] Tariq A, Salman M, Mustafa G, Tawab A, Naheed S, Naz H, Shahid M, Ali H. Agonistic antibacterial potential of Loigolactobacillus coryniformis BCH-4 metabolites against selected human pathogenic bacteria: an in vitro and in silico approach. PLoS One. 2023;18(8):e0289723. https://doi.org/10.1371/journal.pone.0289723 CR - [20] Forestryana D, Arnida A. Phytochemical screenings and thin layer chromatography analysis of ethanol extract jeruju leaf (Hydrolea spinosa L.). Jurnal Ilmiah Farmako Bahari. 2020; 11(2): 113-124. https://doi.org/10.52434/jfb.v11i2.859 CR - [21] Nadar S, Khan T, Patching SG, Omri A. Development of antibiofilm therapeutics strategies to overcome antimicrobial drug resistance. Microorganisms. 2022; 10(2): 303. https://doi.org/10.3390/microorganisms10020303 CR - [22] Samarakoon SR, Ediriweera MK, Nwokwu CDU, Bandara CJ, Tennekoon KH, Piyathilaka P, Karunaratne DN, Karunaratne V. A study on cytotoxic and apoptotic potential of a triterpenoid saponin (3-O-α-L-arabinosyl oleanolic acid) isolated from Schumacheria castaneifolia Vahl in human non-small-cell lung cancer (NCI-H292) cells. Biomed Res Int. 2017;2017:9854083. https://doi.org/10.1155/2017/9854083 CR - [23] Omara T, Kiprop AK, Kosgei VJ. Isolation and characterization of compounds in ethanolic extract of Albizia coriaria (Welw ex. Oliver) leaves: a further evidence of its ethnomedicinal diversity. Bull Natl Res Cent. 2022; 46:30. https://doi.org/10.1186/s42269-022-00716-0 CR - [24] Chepkorir R, Matasyoh JC, Wagara IN. Two withanolides from Withania somnifera (Solanaceae) and activity of methanolic extracts against fungal and bacterial pathogens that affects food crops. Afr J Food Sci. 2018; 12(5): 115- 125. https://doi.org/10.5897/AJFS2016.1503 CR - [25] [CLSI] Clinical and Laboratory Standards Institute. 2020. Performance Standards for Antimicrobial Susceptibility Testing 30th ed. Wayne (PA): Clinical and Laboratory Standards Institute CR - [26] Asahi Y, Miura J, Tsuda T, Kuwabata S, Tsunashima K, Noiri Y, Sakata T, Ebisu S, Hayashi M. Simple observation of Streptococcus mutans biofilm by scanning electron microscopy using ionic liquids. AMB Express. 2015; 5(1):6. https://doi.org/10.1186/s13568-015-0097-4 CR - [27] Sadiq MB, Tarning J, Cho TZA, Anal AK. Antibacterial activities and possible modes of action of Acacia nilotica (L.) Del. against multidrug-resistant Escherichia coli and Salmonella. Molecules. 2017; 22(1): 47. https://doi.org/10.3390/molecules22010047 UR - https://doi.org/10.12991/jrespharm.1766279 L1 - https://dergipark.org.tr/en/download/article-file/5158950 ER -