TY - JOUR T1 - Generalized $(H,\phi )$-Convexity and New Hermite-Hadamard Type Inequalities AU - Sarikaya, Mehmet Zeki PY - 2025 DA - November Y2 - 2025 DO - 10.36753/mathenot.1778929 JF - Mathematical Sciences and Applications E-Notes JO - Math. Sci. Appl. E-Notes PB - Murat TOSUN WT - DergiPark SN - 2147-6268 SP - 201 EP - 208 VL - 13 IS - 4 LA - en AB - In this paper, we introduce a novel class of convex functions, called $(H,\phi)$-convex functions, defined via a general parametric mean $\phi$ and a weighting function $H$. This new convexity notion encompasses several well-known classes such as standard convexity, $s$-convexity, $h$-convexity, and $m$-convexity as particular cases. We provide illustrative examples demonstrating that this class is genuinely more general. Furthermore, we derive a new Hermite-Hadamard type inequality tailored to the $(H, \phi)$ -convex framework. Our results extend and unify various existing inequalities in the literature. KW - Convex function KW - $h$-convex function KW - $m$-convex function KW - $s$ -convex function KW - Hermite-Hadamard inequality CR - [1] Dragomir, S. S., Pearce, C. E. M.: Selected Topics on Hermite-Hadamard Inequalities and Applications. RGMIA Monographs, 2003. CR - [2] Pečarić, J., Proschan, F., Tong, Y. L.: Convex Functions, Partial Orderings and Statistical Applications. Mathematics in Science and Engineering, 187 Academic Press, Boston MA, 1992. CR - [3] Breckner, W. W.: Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Raumen. Publications de l’Institut Mathematique (Beograd). 23 (37), 13–20, (1978). CR - Toader, G.: Some generalizations of the convexity. In: Proceedings of the Colloquium on Approximation and Optimization, 25–27 October 1984, Cluj-Napoca, Romania 329–338 (1984). CR - [5] Varosanec, S.: On $h$-convexity. Journal of Mathematical Analysis and Applications. 326 (1), 303–311, (2007). CR - [6] Bakula, M. K., Pecaric, J., Ribicic, D.: Companion inequalities to Jensen’s inequality for $m$-convex and $ (\alpha ,m)$-convex functions. Journal of Inequalities in Pure and Applied Mathematics. 7 (5), 194 (2006). CR - [7] Bakula, M. K., Özdemir, M. E., Pecaric, J.: Hadamard type inequalities for $m$-convex and $ (\alpha ,m)$-convex functions. Journal of Inequalities in Pure and Applied Mathematics. 9 (4), 96 (2008). CR - [8] Mihesan, V.: A Generalization of the Convexity. Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, Romania, 1993. CR - [9] Sarikaya, M. Z., Saglam, A., Yıldırım, H.: On some Hadamard-type inequalities for $h$-convex functions. Journal of Mathematical Inequalities. 2 (3), 335–341, (2008). UR - https://doi.org/10.36753/mathenot.1778929 L1 - https://dergipark.org.tr/en/download/article-file/5218055 ER -