TY - JOUR T1 - Antioxidant, Anticholinesterase and Antiproliferative Properties of the Wild Mushroom Hygrocybe Conica AU - Korkmaz, Aras Fahrettin PY - 2025 DA - November Y2 - 2025 DO - 10.32571/ijct.1779215 JF - International Journal of Chemistry and Technology JO - Int. J. Chem. Technol. PB - Rabia ACEMİOĞLU WT - DergiPark SN - 2602-277X SP - 280 EP - 286 VL - 9 IS - 2 LA - en AB - In this study, antioxidant, anticholinesterase and antiproliferative properties of ethanol extracts of Hygrocybe conica were determined. The ethanol extract of the mushroom was extracted by Soxhlet apparatus. Antioxidant activities were determined by TAS, TOS, OSI, DPPH and FRAP analyses. The TAS value of the mushroom extract was 3.559 mmol/L, TOS value was 9.350 µmol/L and OSI value was 0.263. Radical scavenging and reducing capacities were also notable, with DPPH measured as 52.360 mg TE/g and FRAP as 78.503 mg TE/g. Anticholinesterase assays revealed moderate enzyme inhibition with IC₅₀ values of 169.29 µg/mL for AChE and 213.41 µg/mL for BChE, indicating lower activity compared to galantamine. The antiproliferative effect was evaluated in the A549 lung cancer cell line, where the extract significantly reduced cell viability in a dose-dependent manner, with the most pronounced inhibition observed at 200 µg/mL. These findings suggest that H. conica is a promising natural source of bioactive compounds with antioxidant, neuroprotective, and anticancer potential. KW - Hygrocybe conica KW - antioxidant activity KW - anticholinesterase KW - antiproliferative effect KW - bioactive compounds CR - Alkan, S., Uysal, A., Kasik, G., Vlaisavljevic, S., Berežni, S., & Zengin, G. (2020). Chemical characterization, antioxidant, enzyme inhibition and antimutagenic properties of eight mushroom species: A comparative study. Journal of Fungi, 6(3), 166. https://doi.org/10.3390/jof6030166 CR - Babos, M., Halász, K., Zagyva, T., Zöld-Balogh, Á., Szegő, D., & Bratek, Z. (2011). Preliminary notes on dual relevance of ITS sequences and pigments in Hygrocybe taxonomy. Persoonia: Molecular Phylogeny and Evolution of Fungi, 26(1), 99–107. https://doi.org/10.3767/003158511X576666 CR - Bal, C., Sevindik, M., Krupodorova, T., & Eraslan, E. C. (2025). Total carbohydrate and protein contents and some biological activities of edible Macrolepiota mastoidea mushroom. Acta Alimentaria, 54(2), 337–346. https://doi.org/10.1556/066.2025.00027 CR - Bhambri, A., Srivastava, M., Mahale, V. G., Mahale, S., & Karn, S. K. (2022). Mushrooms as potential sources of active metabolites and medicines. Frontiers in Microbiology, 13, 837266. https://doi.org/10.3389/fmicb.2022.837266 CR - Borgen, T., & Arnolds, E. (2004). Taxonomy, ecology and distribution of Hygrocybe (Fr.) P. Kumm. and Camarophyllopsis Herink (Fungi, Basidiomycota, Hygrocybeae) in Greenland. Meddelelser om Grønland. Bioscience, 54, 1–64. CR - Chong, E. L., Sia, C. M., Chang, S. K., Yim, H. S., & Khoo, H. E. (2014). Antioxidative properties of an extract of Hygrocybe conica, a wild edible mushroom. Malaysian Journal of Nutrition, 20(1), 1–12. CR - Ellman, G. L., Courtney, K. D., Andres, V., Jr., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9 CR - Eraslan, E. C., Korkmaz, A. I., Uysal, İ., & Bal, C. (2022). Antioxidant potential and heavy metal accumulation of Hygrocybe conica. Eurasian Journal of Medical and Biological Sciences, 2(1), 1–5. CR - Erel, O. (2004). A novel automated method to measure total antioxidant response against potent free radical reactions. Clinical Biochemistry, 37(2), 112–119. https://doi.org/10.1016/j.clinbiochem.2003.10.014 CR - Erel, O. (2005). A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry, 38(12), 1103–1111. https://doi.org/10.1016/j.clinbiochem.2005.08.008 CR - Eroğlu, C., Seçme, M., Atmaca, P., Kaygusuz, O., Gezer, K., Bağcı, G., & Dodurga, Y. (2016). Extract of Calvatia gigantea inhibits proliferation of A549 human lung cancer cells. Cytotechnology, 68(5), 2075–2081. https://doi.org/10.1007/s10616-015-9934-6 CR - Gürgen, A., & Sevindik, M. (2022). Application of artificial neural network coupling multiobjective particle swarm optimization algorithm to optimize Pleurotus ostreatus extraction parameters. Journal of Food Processing and Preservation, 46(11), e16949. https://doi.org/10.1111/jfpp.16949 CR - Gürgen, A., & Sevindik, M. (2025). Single and multi-objective optimization of the red pine mushroom Lactarius deliciosus (Agaricomycetes) extraction conditions using artificial intelligence methods and biological activities of optimized extracts. International Journal of Medicinal Mushrooms, 27(2), 59–73. https://doi.org/10.1615/IntJMedMushrooms.2025030937 CR - Gürgen, A., Unal, O., & Sevindik, M. (2024b). Biological activities of the golden chantarelle mushroom Cantharellus cibarius (Agaricomycetes) extracts obtained as a result of single and multi-objective optimization studies. International Journal of Medicinal Mushrooms, 26(12), 63–74. https://doi.org/10.1615/IntJMedMushrooms.2024031834 CR - Ikram, A., Ibrahim, N. A., Arshad, M. T., Fatima, A., Taseer, A. A., Hussain, M. F., ... & Al-Duais, M. A. (2025). Mushroom bioactive molecules as anticancerous agents: An overview. Food Science & Nutrition, 13(7), e70580. https://doi.org/10.1002/fsn3.70580 CR - Kabaktepe, Ş., Bal, C., Eraslan, E. C., Gürgen, A., Akata, I., & Sevindik, M. (2025). Evaluation of bioactive potential of the ruby bolete Hortiboletus rubellus (Agaricomycetes): Antioxidant, enzyme inhibition, and antiproliferative effects. International Journal of Medicinal Mushrooms, 27(10), 21–31. https://doi.org/10.1615/IntJMedMushrooms.2025032640 CR - Kim, D. Y., Bae, S. M., Han, S. M., & Lee, J. S. (2016). Screening of potent anti-dementia acetylcholinesterase inhibitor-containing edible mushroom Pholiota adiposa and the optimal extraction conditions for the acetylcholinesterase inhibitor. The Korean Journal of Mycology, 44(4), 314–317. https://doi.org/10.4489/KJM.2016.44.4.314 CR - Koyuncu, M. Ö., Görmez, V., Sevindik, M., Krupodorova, T., & Eraslan, E. C. (2025). Multilayered interactions between Lepidoptera and fungi: Spore dispersal, mycophagy, and entomopathogenic relationships. Symbiosis, 87, 1–12. https://doi.org/10.1007/s13199-025-01028-y CR - Laursen, G. A., Ammirati, J. F., & Farr, D. F. (1987). Hygrophoraceae from arctic and alpine tundra in Alaska. In G. A. Laursen & J. F. Ammirati (Eds.), Arctic and Alpine Mycology II (pp. 273–286). Boston, MA: Springer. https://doi.org/10.1007/978-1-4757-1963-8_24 CR - Nguyen, T. K., Im, K. H., Choi, J., Shin, P. G., & Lee, T. S. (2016). Evaluation of antioxidant, anti-cholinesterase, and anti-inflammatory effects of culinary mushroom Pleurotus pulmonarius. Mycobiology, 44(4), 291–301. https://doi.org/10.5941/MYCO.2016.44.4.291 CR - Okumuş, E., Canbolat, F., & Acar, İ. (2025). Evaluation of antioxidant activity, anti-lipid peroxidation effect and elemental impurity risk of some wild Agaricus species mushrooms. BMC Plant Biology, 25(1), 476. https://doi.org/10.1186/s12870-025-05139-9 CR - Phan, C. W., David, P., & Sabaratnam, V. (2017). Edible and medicinal mushrooms: Emerging brain food for the mitigation of neurodegenerative diseases. Journal of Medicinal Food, 20(1), 1–10. https://doi.org/10.1089/jmf.2016.3740 CR - Santosa, P. B., Yuwati, T. W., Hakim, S. S., Hidayat, A., Turjaman, M., & Suhartono, E. (2021, May). Ethnomycological knowledge and nutritional properties of edible mushroom Kulat Siau (Hygrocybe conica) in Central Kalimantan. In IOP Conference Series: Earth and Environmental Science (Vol. 762, No. 1, p. 012058). IOP Publishing. https://doi.org/10.1088/1755-1315/762/1/012058 CR - Seçme, M., Kaygusuz, O., Eroglu, C., Dodurga, Y., Colak, O. F., & Atmaca, P. (2018). Potential anticancer activity of the parasol mushroom, Macrolepiota procera (Agaricomycetes), against the A549 human lung cancer cell line. International Journal of Medicinal Mushrooms, 20(11), 1007–1016. https://doi.org/10.1615/IntJMedMushrooms.2018026885 CR - Sepčić, K., Sabotič, J., Ohm, R. A., Drobne, D., & Jemec Kokalj, A. (2019). First evidence of cholinesterase-like activity in Basidiomycota. PLoS One, 14(4), e0216077. https://doi.org/10.1371/journal.pone.0216077 CR - Sevindik, M. (2018). Investigation of oxidant and antioxidant status of edible mushroom Clavariadelphus truncatus. Mantar Dergisi, 9(2), 165–168. CR - Sevindik, M. (2020). Antioxidant and antimicrobial capacity of Lactifluus rugatus and its antiproliferative activity on A549 cells. Indian Journal of Traditional Knowledge, 19(2), 423–427. CR - Sevindik, M. (2021). Anticancer, antimicrobial, antioxidant and DNA protective potential of mushroom Leucopaxillus gentianeus (Quél.) Kotl. Indian Journal of Experimental Biology, 59(5), 310–315. CR - Sevindik, M., Bal, C., Eraslan, E. C., Uysal, I., & Mohammed, F. S. (2023). Medicinal mushrooms: A comprehensive study on their antiviral potential. Prospects in Pharmaceutical Sciences, 21(2), 42–56. CR - Sevindik, M., Gürgen, A., Khassanov, V. T., & Bal, C. (2024). Biological activities of ethanol extracts of Hericium erinaceus obtained as a result of optimization analysis. Foods, 13(10), 1560. https://doi.org/10.3390/foods13101560 CR - Sevindik, M., Gürgen, A., Korkmaz, A. F., & Akata, I. (2025). Optimizing ultrasonic-assisted extraction process of Paralepista flaccida: A comparative study of antioxidant, anticholinesterase, and antiproliferative activities via response surface methodology and artificial neural network modeling. Molecules, 30(16), 3317. https://doi.org/10.3390/molecules30163317 CR - Silva-Filho, A. G., Bottke, C. C., Baseia, I. G., Cortez, V. G., & Wartchow, F. (2019). Morphological description and new records of Hygrocybe conica var. conica and H. nigrescens var. brevispora (Hygrophoraceae) in Brazil. Hoehnea, 46(3), e012019. https://doi.org/10.1590/2236-8906-08/2018 CR - Tel, G., Apaydın, M., Duru, M. E., & Öztürk, M. (2012). Antioxidant and cholinesterase inhibition activities of three Tricholoma species with total phenolic and flavonoid contents: The edible mushrooms from Anatolia. Food Analytical Methods, 5(3), 495–504. https://doi.org/10.1007/s12161-011-9277-3 CR - Terradas, F., & Wyler, H. (1991). The secodopas, natural pigments in Hygrocybe conica and Amanita muscaria. Phytochemistry, 30(10), 3251–3253. https://doi.org/10.1016/0031-9422(91)83233-9 CR - Tong, Z., Chu, G., Wan, C., Wang, Q., Yang, J., Meng, Z., ... & Ma, H. (2023). Multiple metabolites derived from mushrooms and their beneficial effect on Alzheimer’s diseases. Nutrients, 15(12), 2758. https://doi.org/10.3390/nu15122758 CR - Uygun, A. E., Sevindik, M., & Eraslan, E. C. (2025). Mantarların besinsel gücü: Makro, mikro besin öğeleri ve fonksiyonel potansiyelleri üzerine kapsamlı bir derleme. Wah Academia Journal of Health and Nutrition, 1(2), 4–8. CR - Ünal, O., Gürgen, A., Krupodorova, T., Sevindik, M., Kabaktepe, Ş., & Akata, I. (2025). Optimization of Phellinus hartigii extracts: Biological activities, and phenolic content analysis. BMC Complementary Medicine and Therapies, 25(1), 113. https://doi.org/10.1186/s12906-025-04350-9 CR - Varghese, R., & Dalvi, Y. B. (2021). Natural products as anticancer agents. Current Drug Targets, 22(11), 1272–1287. https://doi.org/10.2174/1389450122666210222104049 CR - Wang, W., Yang, H., Deng, J., Zhu, L., Yang, Y., Liu, Z., ... & Jia, W. (2019). Increased inhibition effect of Antrodin C from the stout camphor medicinal mushroom, Taiwanofungus camphoratus (Agaricomycetes), on A549 through crosstalk between apoptosis and autophagy. International Journal of Medicinal Mushrooms, 21(6), 581–590. https://doi.org/10.1615/IntJMedMushrooms.2019030686 CR - Yim, H. S., Chye, F. Y., Lee, M. Y., Matanjun, P., How, S. E., & Ho, C. W. (2011). Comparative study of antioxidant activities and total phenolic content of selected edible wild mushrooms. International Journal of Medicinal Mushrooms, 13(3), 265–271. https://doi.org/10.1615/IntJMedMushr.v13.i3.80 CR - Zaidman, B. Z., Yassin, M., Mahajna, J., & Wasser, S. P. (2005). Medicinal mushroom modulators of molecular targets as cancer therapeutics. Applied Microbiology and Biotechnology, 67(4), 453–468. https://doi.org/10.1007/s00253-004-1782-0 CR - Zhou, J., Chen, M., Wu, S., Liao, X., Wang, J., Wu, Q., ... & Ding, Y. (2020). A review on mushroom-derived bioactive peptides: Preparation and biological activities. Food Research International, 134, 109230. https://doi.org/10.1016/j.foodres.2020.109230 UR - https://doi.org/10.32571/ijct.1779215 L1 - https://dergipark.org.tr/en/download/article-file/5219370 ER -