TY - JOUR T1 - Deposition Sequence Effects in Bilayer Electrodes: Preparation of PANI / ZnO and ZnO / PANI Via Electrochemical Deposition TT - Çift Katmanlı Elektrotlarda Biriktirme Sırasının Etkileri: Elektrokimyasal Yöntemle PANI/ZnO ve ZnO/PANI Hazırlanması AU - Bulgurcuoğlu, Ayşe Evrim PY - 2025 DA - November Y2 - 2025 DO - 10.21597/jist.1779594 JF - Journal of the Institute of Science and Technology JO - J. Inst. Sci. and Tech. PB - Igdir University WT - DergiPark SN - 2536-4618 SP - 1343 EP - 1353 VL - 15 IS - 4 LA - en AB - Porous nickel foam was used as a conductive scaffold to fabricate bilayer electrodes composed of polyaniline (PANI) and zinc oxide (ZnO) through electrodeposition. Two sets were prepared: PANI/ZnO, where PANI was deposited first and then coated with ZnO, and ZnO/PANI, where ZnO was deposited first and followed by a PANI layer. Electrochemical characterization demonstrated that the sequence of deposition plays a decisive role in performance. Cyclic voltammetry revealed that PANI/ZnO exhibited broader CV profiles and excellent electrochemical accessibility within the 0–1 V potential window. Galvanostatic charge–discharge tests confirmed that both bilayer electrodes outperformed single-component ZnO and PANI, with ZnO/PANI showing slightly longer discharge times and higher capacitance at increased current densities. Ragone analysis indicated that ZnO/PANI delivered superior energy–power balance under high-rate conditions, whereas PANI/ZnO maintained remarkable cycling stability, retaining nearly its full capacitance after prolonged cycling. These results show that both bilayer configurations benefit from PANI and ZnO, but with distinct advantages: PANI/ZnO is highly stable, while ZnO/PANI is better suited for high-rate applications. The findings highlight the importance of deposition order in optimizing hybrid polymer/oxide. KW - PANI/ZnO KW - ZnO/PANI KW - Electrochemistry KW - Supercapacitor KW - Energy Storage N2 - Gözenekli nikel köpük, iletken bir iskelet olarak kullanılarak elektrodepozisyon yöntemiyle polianilin (PANI) ve çinko oksit (ZnO) tabakalarından oluşan çift katmanlı elektrotlar üretildi. İki farklı yapı hazırlandı: PANI/ZnO, yani önce PANI’nın biriktirilip ardından ZnO ile kaplanması; ve ZnO/PANI, yani önce ZnO’nun biriktirilip ardından PANI tabakası ile kaplanması.Elektrokimyasal karakterizasyon, kaplama sırasının performansta belirleyici bir rol oynadığını ortaya koydu. Döngüsel voltametri sonuçları, PANI/ZnO elektrotlarının 0–1 V potansiyel aralığında daha geniş voltamogram profilleri sergilediğini ve mükemmel elektrokimyasal erişilebilirlik sağladığını gösterdi. Galvanostatik şarj–deşarj testleri, her iki çift katmanlı elektrotun da tek bileşenli ZnO ve PANI elektrotlardan daha iyi performans gösterdiğini doğruladı. Özellikle ZnO/PANI, yüksek akım yoğunluklarında biraz daha uzun deşarj süreleri ve daha yüksek kapasitans değerleri sundu. Ragone analizi, ZnO/PANI’nin yüksek hız koşullarında üstün enerji–güç dengesi sağladığını; buna karşılık PANI/ZnO’nun olağanüstü çevrim kararlılığı göstererek uzun süreli döngüden sonra dahi neredeyse tüm kapasitansını koruduğunu ortaya koydu.Bu sonuçlar, her iki çift katmanlı yapının da PANI ve ZnO’nun avantajlarını birleştirdiğini ancak farklı üstünlüklere sahip olduğunu göstermektedir: PANI/ZnO yüksek kararlılığı ile öne çıkarken, ZnO/PANI yüksek hızlı uygulamalar için daha uygundur. Bulgular, hibrit polimer/oksit elektrotların optimizasyonunda kaplama sırasının önemini vurgulamakta ve bu yapıların yeni nesil yüksek performanslı süperkapasitörler için umut verici adaylar olduğunu ortaya koymaktadır. CR - Ahn, D., Yoo, I., Koo, Y. M., Shin, N., Kim, J., & Shin, T. J. (2011). Effects of cobalt-intercalation and polyaniline coating on electrochemical performance of layered manganese oxides. Journal of Materials Chemistry, 21(14), 5282–5289. https://doi.org/10.1039/c0jm03548c CR - Bai, H., Xu, Y., Zhao, L., Li, C., & Shi, G. (2009). Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chemical Communications, 13, 1667–1669. https://doi.org/10.1039/b821805f CR - Cheng, T. M., Yen, S. C., Hsu, C. S., Wang, W. T., Yougbaré, S., Lin, L. Y., & Wu, Y. F. (2023). Novel synthesis of polyaniline, manganese oxide and nickel sulfide lavandula-like composites as efficient active material of supercapacitor. Journal of Energy Storage, 66. https://doi.org/10.1016/j.est.2023.107390 CR - Domingues, S. H., Salvatierra, R. V., Constantinides, C. P., Zarbin, A. J. G., Eisler, D. J., & Rawson, J. M. (2011). Transparent and conductive thin films of graphene/polyaniline nanocomposites prepared through interfacial polymerization. Chemical Communications, 47(9), 2592–2594. https://doi.org/10.1039/c0cc04304d CR - Foronda, J. R. F., Aryaswara, L. G., Santos, G. N. C., Raghu, S. N. V., & Muflikhun, M. A. (2023). Broad-class volatile organic compounds (VOCs) detection via polyaniline/zinc oxide (PANI/ZnO) composite materials as gas sensor application. Heliyon, 9(2). https://doi.org/10.1016/j.heliyon.2023.e13544 CR - Kalambate, P. K., Rawool, C. R., Karna, S. P., & Srivastava, A. K. (2019). Nitrogen-doped graphene/palladium nanoparticles/porous polyaniline ternary composite as an efficient electrode material for high performance supercapacitor. Materials Science for Energy Technologies, 2(2), 246–257. https://doi.org/10.1016/j.mset.2018.12.005 CR - Lamba, P., Singh, P., Singh, P., Singh, P., Bharti, Kumar, A., Gupta, M., & Kumar, Y. (2022). Recent advancements in supercapacitors based on different electrode materials: Classifications, synthesis methods and comparative performance. In Journal of Energy Storage (Vol. 48). Elsevier Ltd. https://doi.org/10.1016/j.est.2021.103871 CR - Liu, Y., Dai, Z., Zhang, W., Jiang, Y., Peng, J., Wu, D., Chen, B., Wei, W., Chen, X., Liu, Z., Wang, Z., Han, F., Ding, D., Wang, L., Li, L., Yang, Y., & Huang, Y. (2021). Sulfonic-Group-Grafted Ti3C2TxMXene: A Silver Bullet to Settle the Instability of Polyaniline toward High-Performance Zn-Ion Batteries. ACS Nano, 15(5), 9065–9075. https://doi.org/10.1021/acsnano.1c02215 CR - Li, X., Zhang, C., Xin, S., Yang, Z., Li, Y., Zhang, D., & Yao, P. (2016). Facile Synthesis of MoS2/Reduced Graphene Oxide@Polyaniline for High-Performance Supercapacitors. ACS Applied Materials and Interfaces, 8(33), 21373–21380. https://doi.org/10.1021/acsami.6b06762 CR - Mahajan, P., Sardana, S., & Mahajan, A. (2025). Ternary MXene/PANI/ZnO-based composite with a built-in p-n heterojunction for high-performance supercapacitor applications. Journal of Physics D: Applied Physics, 58(4). https://doi.org/10.1088/1361-6463/ad875a CR - Palsaniya, S., Nemade, H. B., & Dasmahapatra, A. K. (2021). Hierarchical PANI-RGO-ZnO ternary nanocomposites for symmetric tandem supercapacitor. Journal of Physics and Chemistry of Solids, 154. https://doi.org/10.1016/j.jpcs.2021.110081 CR - Pradeeswari, K., Venkatesan, A., Pandi, P., Karthik, K., Hari Krishna, K. V., & Mohan Kumar, R. (2019). Study on the electrochemical performance of ZnO nanoparticles synthesized via non-aqueous sol-gel route for supercapacitor applications. Materials Research Express, 6(10). https://doi.org/10.1088/2053-1591/ab3cae CR - Qin, D., Zhou, B., Li, Z., & Yang, C. (2024). Construction of controllable multicomponent ZnO-ZnCo/MOF-PANI composites for supercapacitor applications. Journal of Molecular Structure, 1309. https://doi.org/10.1016/j.molstruc.2024.138140 CR - Rahim, M., Yaseen, S., & Ullah, R. (2023). Electrochemical supercapacitor based on polyaniline/bismuth-doped zinc oxide (PANI/Bi–ZnO) composite for efficient energy storage. Journal of Physics and Chemistry of Solids, 182. https://doi.org/10.1016/j.jpcs.2023.111610 CR - Rohith, R., Thejas Prasannakumar, A., Manju, V., R. Mohan, R., & J. Varma, S. (2023). Flexible, symmetric supercapacitor using self-stabilized dispersion-polymerised polyaniline/V2O5 hybrid electrodes. Chemical Engineering Journal, 467. https://doi.org/10.1016/j.cej.2023.143499 CR - Singh, R., Agrohiya, S., Rawal, I., Ohlan, A., Dahiya, S., Punia, R., & Maan, A. S. (2024). Multifunctional porous polyaniline/phosphorus-nitrogen co-doped graphene nanocomposite for efficient room temperature ammonia sensing and high-performance supercapacitor applications. Applied Surface Science, 665. https://doi.org/10.1016/j.apsusc.2024.160368 CR - Wang, Y., Liu, Y., Wang, H., Liu, W., Li, Y., Zhang, J., Hou, H., & Yang, J. (2019). Ultrathin NiCo-MOF Nanosheets for High-Performance Supercapacitor Electrodes. ACS Applied Energy Materials, 2(3), 2063–2071. https://doi.org/10.1021/acsaem.8b02128 CR - Yılmaz, İ., Gelir, A., Yargi, O., Sahinturk, U., & Ozdemir, O. K. (2020). Electrodeposition of zinc and reduced graphene oxide on porous nickel electrodes for high performance supercapacitors. Journal of Physics and Chemistry of Solids, 138. https://doi.org/10.1016/j.jpcs.2019.109307 CR - Zhu, C., He, Y., Liu, Y., Kazantseva, N., Saha, P., & Cheng, Q. (2019). ZnO@MOF@PANI core-shell nanoarrays on carbon cloth for high-performance supercapacitor electrodes. Journal of Energy Chemistry, 35, 124–131. https://doi.org/10.1016/j.jechem.2018.11.006 UR - https://doi.org/10.21597/jist.1779594 L1 - https://dergipark.org.tr/en/download/article-file/5221268 ER -