TY - JOUR T1 - Determination of Accumulation, Elimination Amounts and Some Biomarker Responses of Chlorpyrifos Pesticide in Navicula cryptocephala TT - Navicula cryptocephala'da Klorpirifos Pestisitinin Birikme, Eliminasyon Miktarları ve Bazı Biyobelirteç Yanıtlarının Belirlenmesi AU - Aydın, Ayşe Nur AU - Serdar, Osman AU - Ölçülü, Abdullatif AU - Çiçek Çimen, Işıl Canan AU - Parlak Ak, Tuba AU - Derman, Taner AU - Pala, Ayşegül AU - Cikcikoglu Yildirim, Nuran PY - 2025 DA - December Y2 - 2025 DO - 10.62425/tjau.1790185 JF - The Trout Journal of Atatürk University JO - The Trout Journal of Atatürk University PB - Ataturk University WT - DergiPark SN - 2980-2539 SP - 29 EP - 38 VL - 3 IS - 2 LA - en AB - Pesticides such as chlorpyrifos (CPF), which are used to combat pests in agricultural areas, mix with the aquatic environment in various ways and pose a danger to the aquatic environment. In this study, chlorpyrifos was used in Navicula cryptocephala it was aimed to examine the accumulation, elimination amounts and some biomarker responses. EC50 values were determined as 0.19 mg/L and acute toxicity values were realized at 1/8, 1/4 and 1/2 of EC50 values. Model organisms were exposed to CPF for 24, 48, 72, 96 and 120 days (elimination period). Accumulation amounts from the samples taken at 24 and 96 hours were measured using Atomic Absorption Spectophotometry (AAS) mass spectrometry. With the supernatants obtained, lipid peroxidation (TBARS) and reduced glutathione (GSH) levels, superoxide dismutase (SOD) enzyme activity, glutathione peroxidase (GPx) enzyme activity, catalase (CAT) enzyme activity were determined with an ELISA microplate reader.According to research data, it was determined that the bioaccumulation amount of the CPF active ingredient in microalgae increased as the application concentration and duration increased. It was determined that the biomarker parameters showed statistically significant changes in the control and elimination groups compared to the application groups. KW - Navicula cryptocephala KW - Cylorpyrifos KW - accumilation KW - biomarker N2 - Tarımsal alanlarda zararlılarla mücadele için kullanılan klorpirifos (CPF) gibi pestisitler, çeşitli yollarla sucul çevre ile karışarak sucul çevreye tehlike oluşturmaktadır. Bu çalışmada, Navicula cryptocephala'da klorpirifos kullanılarak birikim, eliminasyon miktarları ve bazı biyomarker tepkileri incelenmiştir. EC50 değerleri 0,19 mg/L olarak belirlenmiş ve akut toksisite değerleri EC50 değerlerinin 1/8, 1/4 ve 1/2'sinde gerçekleştirilmiştir. Model organizmalar 24, 48, 72, 96 ve 120 gün (eliminasyon süresi) boyunca CPF'ye maruz bırakılmıştır. 24 ve 96 saatte alınan numunelerden birikim miktarları Atomik Absorpsiyon Spektrofotometrisi (AAS) kütle spektrometrisi kullanılarak ölçülmüştür. Elde edilen süpernatantlarla, lipit peroksidasyon (TBARS) ve indirgenmiş glutatyon (GSH) seviyeleri, süperoksit dismutaz (SOD) enzim aktivitesi, glutatyon peroksidaz (GPx) enzim aktivitesi, katalaz (CAT) enzim aktivitesi ELISA mikroplaka okuyucu ile belirlendi.Araştırma verilerine göre, mikroalglerde CPF aktif maddesinin biyobirikim miktarının, uygulama konsantrasyonu ve süresi arttıkça arttığı belirlenmiştir. Biyomarker parametrelerinin, uygulama gruplarına kıyasla kontrol ve eliminasyon gruplarında istatistiksel olarak anlamlı değişiklikler gösterdiği belirlenmiştir. CR - Almeida, A. C., Gomes, T., Langford, K., Thomas, K. V., & Tollefsen, K. E. (2019). Oxidative stress potential of the herbicides bifenox and metribuzin in the microalgae Chlamydomonas reinhardtii. Aquatic Toxicology, 210, 117-128. https://doi.org/10.1016/j.aquatox.2019.02.021 CR - Ashraf M., Javaid M., Rashid T., Ayub M., Zafar A., Ali S., & Naeem M. (2011). Replacement of Expensive Pure Nutritive Media with Low Cost Commercial Fertilizers for Mass Culture of Freshwater Algae, Chlorella vulgaris. International Journal of Agriculture & Biology, 13, 484–490. CR - Aydın, A. N., Aydın, R., & Serdar, O. (2022). Determination of Letal Concentrations (LC50) of Cyfluthrın, Dimethoate Insecticides on Gammarus pulex (L., 1758). Acta Aquatica Turcica, 18(3), 384-392. https://doi.org/10.22392/actaquatr.1080270 CR - Baruah, P., & Chaurasia, N. (2020). Ecotoxicological effects of alpha-cypermethrin on freshwater alga Chlorella sp. Growth inhibition and oxidative stress studies. Environmental Toxicology and Pharmacology, 76, 103347. https://doi.org/10.1016/j.etap.2020.103347 CR - Branco, D., Lima, A., Almedia, S.F.P., & Figueria, E. (2010). Sensitivity of biochemical markers to evaluate cadmium stress in the freshwater diatom Nitzschia palea (Kutzing) W. Smith. Aquatic Toxicology, 99, 109–117. https://doi.org/10.1016/j.aquatox.2010.04.010 CR - Debenest, T., Silvestre, J., & Pinelli, E. (2013). Diatoms in Ecotoxicology. In: Férard JF., Blaise C. (eds) Encyclopedia of Aquatic Ecotoxicology (pp. 295-304). Springer, Dordrecht. The Netherlands CR - de Zwart, L. L., Meerman, J. H., Commandeur, J. N., & Vermeulen, N. P. (1999). Biomarkers of free radical damage: applications in experimental animals and in humans. Free Radical Biology and Medicine, 26(1-2), 202-226. https://doi.org/10.1016/S0891-5849(98)00196-8 CR - Du, J., Izquierdo, D., Naoum, J., Ohlund, L., Sleno, L., Beisner, B. E., & Juneau, P. (2023). Pesticide responses of Arctic and temperate microalgae differ in relation to ecophysiological characteristics. Aquatic Toxicology, 254, 106323. https://doi.org/10.1016/j.aquatox.2022.106323 CR - Eaton, D.L., Daroff, R.B., Autrup, H., Bridges, J., Buffler, P., Costa, L.G., Coyle, J., McKhann, G., Mobley, W.C., Nadel, L., Neubert, D., Schulte-Hermann, R., & Spencer, P.S. (2008). Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment. Critical Reviews in Toxicology, 38(sup2), 1-125. https://doi.org/10.1080/10408440802272158 CR - Erdem, A., Metzler, D., Cha, D., & Huang, C.P. (2014). Inhibition of bacteria by photocatalytic nano-TiO2 particles in the absence of light. International Journal of Environmental Science and Technology, 12(9), 2987-2996. https://doi.org/10.1007/s13762-014-0729-2 CR - Fenner, K., Canonica, S., Wackett, L.P., & Elsner, M. (2013). Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science, 341, 752–758. https://doi.org/10.1126/science.1236281 CR - Ghosh, M., & Gaur, J. P. (1998). Current velocity and the establishment of stream algal periphyton communities. Aquatic Botany, 60(1), 1-10. https://doi.org/10.1016/S0304-3770(97)00073-9 CR - Gibbons, D., Morrissey, C., & Mineau, P. (2015). A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environmental Science and Pollution Research, 22, 103–118. https://doi.org/10.1007/s11356-014-3180-5 CR - Gil, F., & Pla, A. (2001). Biomarkers as biological indicators of xenobiotic exposure. Journal of Applied Toxicology, 21(4), 245-255. https://doi.org/10.1002/jat.769 CR - Guo, J., Peng, J., Lei, Y., Kanerva, M., Li, Q., Song, J., & Sun, H. (2020). Comparison of oxidative stress induced by clarithromycin in two freshwater microalgae Raphidocelis subcapitata and Chlorella vulgaris. Aquatic toxicology, 219, 105376. https://doi.org/10.1016/j.aquatox.2019.105376 CR - He, B., Oki, T., Sun, F.B., Komori, D., Kanae, S., Wang, Y., Kim, H., & Yamazaki, D. (2011). Estimating monthly total nitrogen concentration in streams by using artificial neural network. Journal of Environmental Management, 92(1), 172–177. https://doi.org/10.1016/j.jenvman.2010.09.014 CR - Hernández-García, C. I., & Martínez-Jerónimo, F. (2020). Multistressor negative effects on an experimental phytoplankton community. The case of glyphosate and one toxigenic cyanobacterium on Chlorophycean microalgae. Science of the Total Environment, 717, 137186. https://doi.org/10.1016/j.scitotenv.2020.137186 CR - Imlay, J.A., Chin, S.M., & Linn, S. (1998). Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science, 240, 640–642. https://doi.org/10.1126/science.2834821 CR - Kováčik, J., Antoš, V., Micalizzi, G., Dresler, S., Hrabák, P., & Mondello, L. (2018). Accumulation and toxicity of organochlorines in green microalgae. Journal of hazardous materials, 347, 168-175. https://doi.org/10.1016/j.jhazmat.2017.12.056 CR - Kumar, M. S., Kabra, A. N., Min, B., El-Dalatony, M. M., Xiong, J., Thajuddin, N., & Jeon, B. H. (2016). Insecticides induced biochemical changes in freshwater microalga Chlamydomonas mexicana. Environmental Science and Pollution Research, 23, 1091-1099. https://doi.org/10.1007/s11356-015-4681-6 CR - Landrigan, P.J. (2010). What causes autism? Exploring the environmental contribution. Current Opinion in Pediatrics, 22, 219-225. http://doi.org/10.1097/MOP.0b013e328336eb9a CR - Machado, M. D., & Soares, E. V. (2019). Impact of erythromycin on a non-target organism: Cellular effects on the freshwater microalga Pseudokirchneriella subcapitata. Aquatic Toxicology, 208, 179-186. https://doi.org/10.1016/j.aquatox.2019.01.014 CR - Martínez-Álvarez, R. M., Morales, A. E., & Sanz, A. (2005). Antioxidant defenses in fish: biotic and abiotic factors. Reviews in Fish Biology and fisheries, 15, 75-88. https://doi.org/10.1007/s11160-005-7846-4 CR - Nie, J., Sun, Y., Zhou, Y., Kumar, M., Usman, M., Li, J., & Tsang, D. C. (2020). Bioremediation of water containing pesticides by microalgae: Mechanisms, methods, and prospects for future research. Science of the Total Environment, 707, 136080. https://doi.org/10.1016/j.scitotenv.2019.136080 CR - Nikkanen, L., Solymosi, D., Jokel, M., & Allahverdiyeva, Y. (2021). Regulatory electron transport pathways of photosynthesis in cyanobacteria and microalgae: Recent advances and biotechnological prospects. Physiologia Plantarum, 173(2), 514-525. https://doi.org/10.1111/ppl.13404 CR - OECD. (2011). 201: Freshwater alga and cyanobacteria. growth ınhibition test. www.oecd-ilibrary.org/environment/test-no-201-alga-growth-inhibition-test_9789264069923-en, 2019 CR - Olga, B., Eija, V., & Kurt, V.F. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany, 91(2), 179–94. https://doi.org/10.1093/aob/mcf118 CR - Özkaleli, M., & Erdem, A. (2017). Bakır oksit nanopartiküllerinin Chlorella vulgaris üzerindeki ekotoksik etkileri. Sinop University Journal of Natural Sciences, 2(1), 13-23. CR - Pérez-Legaspi, I. A., Ortega-Clemente, L. A., Moha-León, J. D., Ríos-Leal, E., Gutiérrez, S. C. R., & Rubio-Franchini, I. (2016). Effect of the pesticide lindane on the biomass of the microalgae Nannochloris oculata. Journal of Environmental Science and Health, Part B, 51(2), 103-106. https://doi.org/10.1080/03601234.2015.1092824 CR - Piner, P. (2009). Lambda-Cyhalothrinin Oreochromis niloticus’da karaciğerde pipeonil bütosit modülatörlüğünde oksidatif stres potansiyelinin belirlenmesi, stres proteinleri ve apoptozis üzerine etkileri. Doktora Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana, 102s. CR - Regaldo L., Gervasio S., Troiani H., & Gagneten A.M. (2013). Bioaccumulation and Toxicity of Copper and Lead in Chlorella vulgaris. Journal of Algal Biomass Utilization, 4(2), 59–66. CR - Rioboo, C., Prado, R., Herrero, C. C. I. D., & Cid, A. (2007). Population growth study of the rotifer Brachionus sp. fed with triazine-exposed microalgae. Aquatic toxicology, 83(4), 247-253. https://doi.org/10.1016/j.aquatox.2007.04.006 CR - Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., C.A. Johnson., U. Von Gunten., & B. Wehrli. (2006). The challenge of micropollutants in aquatic systems. Science, 313, 1072–1077. http://doi.org/10.1126/science.1127291 CR - Singh, B.K. (2009). Organophosphorus-degrading bacteria: ecology and industrial applications. Nature Reviews Microbiology, 7, 156–164. https://doi.org/10.1038/nrmicro2050 CR - Soto, P., Gaete, H., & Hidalgo, M. E. (2011). Assessment of catalase activity, lipid peroxidation, chlorophyll-a, and growth rate in the freshwater green algae Pseudokirchneriella subcapitata exposed to copper and zinc. Latin American Journal of Aquatic Research, 39(2), 280-285. http://doi.org/10.3856/vol39-issue2-fulltext-9 CR - Tréguer, P., Nelson, D.M., Van Bennekom, A.J., Demaster, D.J., Leynaert, A., & Quéguiner, B. (1995). The Silica Balance in the World ocean: a reestimate. Science, 268, 375–379. http://doi.org/10.1126/science.268.5209.375 CR - Valavanidis, A., Vlahogianni, T., Dassenakis, M., & Scoullos, M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and environmental safety, 64(2), 178-189. https://doi.org/10.1016/j.ecoenv.2005.03.013 CR - Vandana, S., Basu, D.B., & Asit, K.C. (2001). Lipid peroxidation, free radical scavenging enzymes, and glutathione redox system in blood of rats exposed to propoxur. Pesticide Biochemistry and Physiology, 71(3), 133–139. https://doi.org/10.1006/pest.2001.2571 CR - Van Camp, W., Inzé, D., & Van Montagu, M. (1997). The regulation and function of tobacco superoxide dismutases. Free Radical Biology and Medicine, 23(3), 515-520. https://doi.org/10.1016/S0891-5849(97)00112-3 CR - Wang, G., Zhang, Q., Li, J., Chen, X., Lang, Q., & Kuang, S. (2019). Combined effects of erythromycin and enrofloxacin on antioxidant enzymes and photosynthesis-related gene transcription in Chlorella vulgaris. Aquatic Toxicology, 212, 138-145. https://doi.org/10.1016/j.aquatox.2019.05.004 CR - Yagi, K. (1984). Assay for plasma lipid peroxidase. Methods in Enzymology, 109, 328-331. CR - Yoon, K.Y., Byeon, J.H., Park. J.H., & Hwang, J. (2007). Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Science of The Total Environment, 373(2), 572-575. https://doi.org/10.1016/j.scitotenv.2006.11.007 CR - Zhang, S., Qiu, C. B., Zhou, Y., Jin, Z. P., & Yang, H. (2011). Bioaccumulation and degradation of pesticide fluroxypyr are associated with toxic tolerance in green alga Chlamydomonas reinhardtii. Ecotoxicology, 20(2), 337-347. https://doi.org/10.1007/s10646-010-0583-z CR - Zhu, J., Cai, Y., Wakisaka, M., Yang, Z., Yin, Y., Fang, W., & Zheng, A. L. T. (2023). Mitigation of oxidative stress damage caused by abiotic stress to improve biomass yield of microalgae: A review. Science of the Total Environment, 896, 165200. https://doi.org/10.1016/j.scitotenv.2023.165200 UR - https://doi.org/10.62425/tjau.1790185 L1 - https://dergipark.org.tr/en/download/article-file/5269935 ER -