TY - JOUR T1 - DEGREE SUM SPECTRA AND DEGREE SUM ENERGY OF CERTAIN FAMILIES OF GRAPHS AU - Naikar, Roopa S. AU - Mirajkar, Keerthi G. AU - Bparvat, Parvathalu PY - 2025 DA - September Y2 - 2025 JF - TWMS Journal of Applied and Engineering Mathematics JO - JAEM PB - Işık University Press WT - DergiPark SN - 2146-1147 SP - 2284 EP - 2296 VL - 15 IS - 9 LA - en AB - For any simple graph G, the degree sum matrix is defined as a matrix in which each entry represents the sum of the degrees of a pair of vertices. The degree sum energy is the absolute sum of the eigenvalues of the degree sum matrix of G. In this paper, we determine the degree sum spectra and the degree sum energy of certain classes of graphs and their complements. KW - Degree sum spectra KW - degree sum energy KW - sunlet graph KW - windmill graph KW - complement of a graph CR - Cvetkovic, D., Rowlinson, P. and Simic, S., (2009), An Introduction to the Theory of Graph Spectra., Cambridge University Press, Cambridge. CR - Lewis, D. W., (1995), Matrix Theory, Allied Publishers, Bombay. CR - Gallian, J. A., (2018), A dynamic survey of graph labeling, Electron. J. Combin., 6, 6(25), pp. 4–623. CR - Gutman, I., (1978), The energy of a graph, Ber. Math. Statist. Sekt. Forsch. Graz., 103, pp. 1–22. CR - Jog, S. R., Hande, S. P. and Revankar, D. S., (2013), Degree sum polynomial of graph valued functions on regular graphs, Int. J. Graph Theory, 1(3), pp. 108–115. CR - Jog, S. R. and Kotambari, R., (2016), Degree sum energy of some graphs, Annals Pure Appl. Math., 11(1), pp. 17–27. CR - Ramane, H. S., Revankar, D. S. and Patil, J. B., (2013), Bounds for the degree sum eigenvalue and degree sum energy of a graph, Int. J. Pure and Appl. Math. Sci., 6(2), pp. 161–167. CR - Ramane, H. S. and Shinde, S. S., (2017), Degree exponent polynomial of graphs obtained by some graph operations, Electron. Notes Disc. Math., 63, pp. 161–168. UR - https://dergipark.org.tr/en/pub/twmsjaem/issue//1792790 L1 - https://dergipark.org.tr/en/download/article-file/5281853 ER -