TY - JOUR T1 - Epigenome Editing: Emerging Tools, Therapeutic Applications, and Challenges in Human Disease Treatment AU - Rahimpour, Azam AU - Mirahmadi, Maryam AU - Hashemi, Nader AU - Tabatabaee, Sayed Hassan AU - Shams, Forough AU - Teng, Yong PY - 2025 DA - November Y2 - 2025 JF - Biotech Studies JO - Biotech Studies PB - Tarla Bitkileri Merkez Araştırma Enstitüsü WT - DergiPark SN - 2687-3761 SP - 13 EP - 34 VL - 35 IS - 2 LA - en AB - Epigenetic modifications, including histone alterations, non-coding RNA interactions, and DNA methylation, regulate gene expression without altering the underlying DNA sequence. These modifications are essential for normal biological processes; however, their aberrant regulation is linked to numerous life-threatening disorders. Genome editing nucleases such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR/Cas systems offer promising tools for the precise correction of epigenetic abnormalities. This review explores epigenetic mechanisms, genome editing technologies for epigenetic modulation, and their applications in disease contexts, such as cancer and neurodegeneration, with reference to both in vitro and in vivo studies demonstrating therapeutic potential. For instance, aberrant histone acetylation and methylation patterns are frequently observed in cancer. Abnormal DNA methylation and disruptions in histone modifications have been implicated in neurological disorders, such as Alzheimer’s and Huntington’s disease. Although ZFNs and TALENs are foundational tools, their use has been limited by challenges in protein engineering and nonspecific targeting. CRISPR/Cas systems have become a versatile platform. Catalytically inactive Cas9 (dCas9) can be fused to epigenetic editing domains, such as histone deacetylases and DNA methyltransferases, to precisely regulate gene expression. For example, dCas9 has been used to reactivate the BRCA1 tumor suppressor gene in cancer cells. Although epigenetic editing holds significant promise in biomedical research and precision medicine, several challenges remain. These include unintended epigenetic alterations, the efficient delivery of editing tools to target cells, and limited in vivo validation. Future studies using animal models are essential to evaluate the translational potential and clinical applicability of this approach. KW - Epigenetic KW - Genome editing KW - CRISPR/Cas KW - TALEN KW - ZFN CR - Adhikari, N., Jha, T., & Ghosh, B. (2021). Dissecting Histone Deacetylase 3 in Multiple Disease Conditions: Selective Inhibition as a Promising Therapeutic Strategy. Journal of Medicinal Chemistry, 64(13), 8827-8869. https://doi.org/10.1021/acs.jmedchem.0c01676 CR - Alaskhar Alhamwe, B., Khalaila, R., Wolf, J., von Bulow, V., Harb, H., Alhamdan, F., Hii, C. S., Prescott, S. L., Ferrante, A., Renz, H., Garn, H., & Potaczek, D. P. (2018). Histone modifications and their role in epigenetics of atopy and allergic diseases. Allergy, Asthma, and Clinical Immunology, 14, 39. https://doi.org/10.1186/s13223-018-0259-4 CR - Alghamdi, T. A., Batchu, S. N., Hadden, M. J., Yerra, V. G., Liu, Y., Bowskill, B. B., Advani, S. L., Geldenhuys, L., Siddiqi, F. S., Majumder, S., & Advani, A. (2018). Histone H3 Serine 10 Phosphorylation Facilitates Endothelial Activation in Diabetic Kidney Disease. Diabetes, 67(12), 2668-2681. https://doi.org/10.2337/db18-0124 CR - Altinbay, M., Wang, J., Chen, J., Schafer, D., Sprang, M., Blagojevic, B., Wolfl, S., Andrade-Navarro, M. A., Dikic, I., Knapp, S., & Cheng, X. (2024). Chem-CRISPR/dCas9FCPF: a platform for chemically induced epigenome editing. Nucleic Acids Research, 52(19), 11587-11601. https://doi.org/10.1093/nar/gkae798 CR - Baccarelli, A. A., & Ordovas, J. (2023). Epigenetics of Early Cardiometabolic Disease: Mechanisms and Precision Medicine. Circulation Research, 132(12), 1648-1662. https://doi.org/10.1161/CIRCRESAHA.123.322135 CR - Bayat, H., Farahmand, F., Tabatabaee, S. H., Shams, F., Mohammadian, O., Pourmaleki, E., & Rahimpour, A. (2024a). Evaluation of the paired-Cas9 nickase and RNA-guided FokI genome editing tools in precise integration of an anti-CD52 bicistronic monoclonal antibody expression construct at Chinese hamster ovary cells 18S rDNA locus. Protein Expression and Purification, 217, 106445. https://doi.org/10.1016/j.pep.2024.106445 CR - Bayat, H., Mirahmadi, M., Azarshin, Z., Ohadi, H., Delbari, A., & Ohadi, M. (2024b). CRISPR/Cas9-mediated deletion of a GA-repeat in human GPM6B leads to disruption of neural cell differentiation from NT2 cells. Scientific Reports, 14(1), 2136. https://doi.org/10.1038/s41598-024-52675-3 CR - Bayat, H., Modarressi, M. H., & Rahimpour, A. (2018). The Conspicuity of CRISPR-Cpf1 System as a Significant Breakthrough in Genome Editing. Current Microbiology, 75(1), 107-115. https://doi.org/10.1007/s00284-017-1406-8 CR - Bayat, H., Omidi, M., Rajabibazl, M., Sabri, S., & Rahimpour, A. (2017). The CRISPR Growth Spurt: from Bench to Clinic on Versatile Small RNAs. Journal of Microbiology and Biotechnology, 27(2), 207-218. https://doi.org/10.4014/jmb.1607.07005 CR - Becker, S., & Boch, J. (2021). TALE and TALEN genome editing technologies. Gene and Genome Editing, 2. https://doi.org/10.1016/j.ggedit.2021.100007 CR - Berdasco, M., & Esteller, M. (2013). Genetic syndromes caused by mutations in epigenetic genes. Human Genetics, 132(4), 359-383. https://doi.org/10.1007/s00439-013-1271-x CR - Bertino, E. M., & Otterson, G. A. (2011). Romidepsin: a novel histone deacetylase inhibitor for cancer. Expert Opinion on Investigational Drugs, 20(8), 1151-1158. https://doi.org/10.1517/13543784.2011.594437 CR - Bingen, J. M., Clark, L. V., Band, M. R., Munzir, I., & Carrithers, M. D. (2022). Differential DNA methylation associated with multiple sclerosis and disease modifying treatments in an underrepresented minority population. Frontiers in Genetics, 13, 1058817. https://doi.org/10.3389/fgene.2022.1058817 CR - Black, J. B., Adler, A. F., Wang, H. G., D'Ippolito, A. M., Hutchinson, H. A., Reddy, T. E., Pitt, G. S., Leong, K. W., & Gersbach, C. A. (2016). Targeted Epigenetic Remodeling of Endogenous Loci by CRISPR/Cas9-Based Transcriptional Activators Directly Converts Fibroblasts to Neuronal Cells. Cell Stem Cell, 19(3), 406-414. https://doi.org/10.1016/j.stem.2016.07.001 CR - Blum, K., Bowirrat, A., Baron, D., Elman, I., Makale, M. T., Cadet, J. L., Thanos, P. K., Hanna, C., Ahmed, R., Gondre-Lewis, M. C., Dennen, C. A., Braverman, E. R., Soni, D., Carney, P., Khalsa, J., Modestino, E. J., Barh, D., Bagchi, D., Badgaiyan, R. D.,…Gold, M. S. (2024). Identification of stress-induced epigenetic methylation onto dopamine D2 gene and neurological and behavioral consequences. Gene & Protein in Disease, 3(1). https://doi.org/10.36922/gpd.1966 CR - Bohnsack, J. P., Zhang, H., Wandling, G. M., He, D., Kyzar, E. J., Lasek, A. W., & Pandey, S. C. (2022). Targeted epigenomic editing ameliorates adult anxiety and excessive drinking after adolescent alcohol exposure. Science Advances, 8(18), eabn2748. https://doi.org/10.1126/sciadv.abn2748 CR - Brandt, B., Rashidiani, S., Ban, A., & Rauch, T. A. (2019). DNA Methylation-Governed Gene Expression in Autoimmune Arthritis. International Journal of Molecular Sciences, 20(22). https://doi.org/10.3390/ijms20225646 CR - Braun, S. M. G., Kirkland, J. G., Chory, E. J., Husmann, D., Calarco, J. P., & Crabtree, G. R. (2017). Rapid and reversible epigenome editing by endogenous chromatin regulators. Nature Communication, 8(1), 560. https://doi.org/10.1038/s41467-017-00644-y CR - Brezgin, S., Kostyusheva, A., Kostyushev, D., & Chulanov, V. (2019). Dead Cas Systems: Types, Principles, and Applications. International Journal of Molecular Sciences, 20(23). https://doi.org/10.3390/ijms20236041 CR - Cappelluti, M. A., Mollica Poeta, V., Valsoni, S., Quarato, P., Merlin, S., Merelli, I., & Lombardo, A. (2024). Durable and efficient gene silencing in vivo by hit-and-run epigenome editing. Nature, 627(8003), 416-423. https://doi.org/10.1038/s41586-024-07087-8 CR - Castro-Munoz, L. J., Ulloa, E. V., Sahlgren, C., Lizano, M., De La Cruz-Hernandez, E., & Contreras-Paredes, A. (2023). Modulating epigenetic modifications for cancer therapy (Review). Oncology Reports, 49(3). https://doi.org/10.3892/or.2023.8496 CR - Cavazza, A., Molina-Estevez, F. J., Reyes, A. P., Ronco, V., Naseem, A., Malensek, S., Pecan, P., Santini, A., Heredia, P., Aguilar-Gonzalez, A., Boulaiz, H., Ni, Q., Cortijo-Gutierrez, M., Pavlovic, K., Herrera, I., de la Cerda, B., Garcia-Tenorio, E. M., Richard, E., Granados-Principal, S.,…Benabdellah, K. (2025). Advanced delivery systems for gene editing: A comprehensive review from the GenE-HumDi COST Action Working Group. Molecular Therapy Nucleic Acids, 36(1), 102457. https://doi.org/10.1016/j.omtn.2025.102457 CR - Celarain, N., & Tomas-Roig, J. (2020). Aberrant DNA methylation profile exacerbates inflammation and neurodegeneration in multiple sclerosis patients. Journal of Neuroinflammation, 17(1), 21. https://doi.org/10.1186/s12974-019-1667-1 CR - Cerna, M. (2019). Epigenetic Regulation in Etiology of Type 1 Diabetes Mellitus. International Journal of Molecular Sciences, 21(1). https://doi.org/10.3390/ijms21010036 CR - Chandrasegaran, S. (2017). Recent advances in the use of ZFN-mediated gene editing for human gene therapy. Cell & Gene Therapy Insights, 3(1), 33-41. https://doi.org/10.18609/cgti.2017.005 CR - Chen, S. H., Lv, Q. L., Hu, L., Peng, M. J., Wang, G. H., & Sun, B. (2017). DNA methylation alterations in the pathogenesis of lupus. Clinical and Experimental Immunology, 187(2), 185-192. https://doi.org/10.1111/cei.12877 CR - Chen, Y., Ren, B., Yang, J., Wang, H., Yang, G., Xu, R., You, L., & Zhao, Y. (2020). The role of histone methylation in the development of digestive cancers: a potential direction for cancer management. Signal Transduction and Targeted Therapy, 5(1), 143. https://doi.org/10.1038/s41392-020-00252-1 CR - Choudhury, S. R., Cui, Y., Lubecka, K., Stefanska, B., & Irudayaraj, J. (2016). CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget, 7(29), 46545-46556. https://doi.org/10.18632/oncotarget.10234 CR - Costa, P., Sales, S. L. A., Pinheiro, D. P., Pontes, L. Q., Maranhao, S. S., Pessoa, C. D. O., Furtado, G. P., & Furtado, C. L. M. (2023). Epigenetic reprogramming in cancer: From diagnosis to treatment. Frontiers in Cell & Developmental Biology, 11, 1116805. https://doi.org/10.3389/fcell.2023.1116805 CR - Dai, W., Qiao, X., Fang, Y., Guo, R., Bai, P., Liu, S., Li, T., Jiang, Y., Wei, S., Na, Z., Xiao, X., & Li, D. (2024). Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduction and Targeted Therapy, 9(1), 332. https://doi.org/10.1038/s41392-024-02039-0 CR - Dashti, M., Nizam, R., Hebbar, P., Jacob, S., John, S. E., Channanath, A., Al-Kandari, H., Thanaraj, T. A., & Al-Mulla, F. (2022). Differentially methylated and expressed genes in familial type 1 diabetes. Scientific Reports, 12(1), 11045. https://doi.org/10.1038/s41598-022-15304-5 CR - de Morais, C., Correia, E. M., Bonamino, M. H., & Vasconcelos, Z. F. M. (2024). Cell-Penetrating Peptides and CRISPR-Cas9: A Combined Strategy for Human Genetic Disease Therapy. Human Gene Therapy, 35(19-20), 781-797. https://doi.org/10.1089/hum.2024.020 CR - Dehshahri, A., Biagioni, A., Bayat, H., Lee, E. H. C., Hashemabadi, M., Fekri, H. S., Zarrabi, A., Mohammadinejad, R., & Kumar, A. P. (2021). Editing SOX Genes by CRISPR-Cas: Current Insights and Future Perspectives. International Journal of Molecular Sciences, 22(21). https://doi.org/10.3390/ijms222111321 CR - Dhar, G. A., Saha, S., Mitra, P., & Nag Chaudhuri, R. (2021). DNA methylation and regulation of gene expression: Guardian of our health. Nucleus, 64(3), 259-270. https://doi.org/10.1007/s13237-021-00367-y CR - Eisenstein, M. (2012). Sangamo's lead zinc-finger therapy flops in diabetic neuropathy. Nature Biotechnology, 30(2), 121-123. https://doi.org/10.1038/nbt0212-121a CR - Espinosa, J. M. (2008). Histone H2B ubiquitination: the cancer connection. Genes & Development, 22(20), 2743-2749. https://doi.org/10.1101/gad.1732108 CR - Fadul, S. M., Arshad, A., & Mehmood, R. (2023). CRISPR-based epigenome editing: mechanisms and applications. Epigenomics, 15(21), 1137-1155. https://doi.org/10.2217/epi-2023-0281 CR - Fang, Z., Wang, X., Sun, X., Hu, W., & Miao, Q. R. (2021). The Role of Histone Protein Acetylation in Regulating Endothelial Function. Frontiers in Cell and Developmental Biology, 9, 672447. https://doi.org/10.3389/fcell.2021.672447 CR - Friso, S., Pizzolo, F., Choi, S. W., Guarini, P., Castagna, A., Ravagnani, V., Carletto, A., Pattini, P., Corrocher, R., & Olivieri, O. (2008). Epigenetic control of 11 beta-hydroxysteroid dehydrogenase 2 gene promoter is related to human hypertension. Atherosclerosis, 199(2), 323-327. https://doi.org/10.1016/j.atherosclerosis.2007.11.029 CR - Gaj, T., Gersbach, C. A., & Barbas, C. F., 3rd. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31(7), 397-405. https://doi.org/10.1016/j.tibtech.2013.04.004 CR - Gao, D., & Liang, F. S. (2018). Chemical Inducible dCas9-Guided Editing of H3K27 Acetylation in Mammalian Cells. Methods in Molecular Biology, 1767, 429-445. https://doi.org/10.1007/978-1-4939-7774-1_24 CR - Garcia-Bloj, B., Moses, C., Sgro, A., Plani-Lam, J., Arooj, M., Duffy, C., Thiruvengadam, S., Sorolla, A., Rashwan, R., Mancera, R. L., Leisewitz, A., Swift-Scanlan, T., Corvalan, A. H., & Blancafort, P. (2016). Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system. Oncotarget, 7(37), 60535-60554. https://doi.org/10.18632/oncotarget.11142 CR - Gjaltema, R. A. F., & Rots, M. G. (2020). Advances of epigenetic editing. Current Opinion in Chemical Biology, 57, 75-81. https://doi.org/10.1016/j.cbpa.2020.04.020 CR - Grant, S., Easley, C., & Kirkpatrick, P. (2007). Vorinostat. Nature Reviews: Drug Discovery, 6(1), 21-22. https://doi.org/10.1038/nrd2227 CR - Gu, M., Ren, B., Fang, Y., Ren, J., Liu, X., Wang, X., Zhou, F., Xiao, R., Luo, X., You, L., & Zhao, Y. (2024). Epigenetic regulation in cancer. MedComm (2020), 5(2), e495. https://doi.org/10.1002/mco2.495 CR - Ho, T. C. S., Chan, A. H. Y., & Ganesan, A. (2020). Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight. Journal of Medicinal Chemistry, 63(21), 12460-12484. https://doi.org/10.1021/acs.jmedchem.0c00830 CR - Hsu, M. N., Liao, H. T., Truong, V. A., Huang, K. L., Yu, F. J., Chen, H. H., Nguyen, T. K. N., Makarevich, P., Parfyonova, Y., & Hu, Y. C. (2019). CRISPR-based Activation of Endogenous Neurotrophic Genes in Adipose Stem Cell Sheets to Stimulate Peripheral Nerve Regeneration. Theranostics, 9(21), 6099-6111. https://doi.org/10.7150/thno.36790 CR - Hu, J., Lei, Y., Wong, W. K., Liu, S., Lee, K. C., He, X., You, W., Zhou, R., Guo, J. T., Chen, X., Peng, X., Sun, H., Huang, H., Zhao, H., & Feng, B. (2014). Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors. Nucleic Acids Research, 42(7), 4375-4390. https://doi.org/10.1093/nar/gku109 CR - Hurtado, C., Acevedo Saenz, L. Y., Vasquez Trespalacios, E. M., Urrego, R., Jenks, S., Sanz, I., & Vasquez, G. (2020). DNA methylation changes on immune cells in Systemic Lupus Erythematosus. Autoimmunity, 53(3), 114-121. https://doi.org/10.1080/08916934.2020.1722108 CR - Ichikawa, D. M., Abdin, O., Alerasool, N., Kogenaru, M., Mueller, A. L., Wen, H., Giganti, D. O., Goldberg, G. W., Adams, S., Spencer, J. M., Razavi, R., Nim, S., Zheng, H., Gionco, C., Clark, F. T., Strokach, A., Hughes, T. R., Lionnet, T., Taipale, M.,…Noyes, M. B. (2023). A universal deep-learning model for zinc finger design enables transcription factor reprogramming. Nature Biotechnology, 41(8), 1117-1129. https://doi.org/10.1038/s41587-022-01624-4 CR - Jakovcevski, M., & Akbarian, S. (2012). Epigenetic mechanisms in neurological disease. Nature Medicine, 18(8), 1194-1204. https://doi.org/10.1038/nm.2828 CR - Jallow, M. B., Huang, K., & Qiu, M. (2025). Versatility of LNPs across different administration routes for targeted RNA delivery. J Mater Chem B, 13(26), 7637-7652. https://doi.org/10.1039/d5tb00575b CR - Jeffries, M. A. (2018). Epigenetic editing: How cutting-edge targeted epigenetic modification might provide novel avenues for autoimmune disease therapy. Clinical Immunology, 196, 49-58. https://doi.org/10.1016/j.clim.2018.02.001 CR - Jin, Z., & Liu, Y. (2018). DNA methylation in human diseases. Genes & Diseases, 5(1), 1-8. https://doi.org/10.1016/j.gendis.2018.01.002 CR - Kannan, S., Altae-Tran, H., Zhu, S., Xu, P., Strebinger, D., Oshiro, R., Faure, G., Moeller, L., Pham, J., Mears, K. S., Ni, H. M., Macrae, R. K., & Zhang, F. (2025). Evolution-guided protein design of IscB for persistent epigenome editing in vivo. Nature Biotechnology. https://doi.org/10.1038/s41587-025-02655-3 CR - Karbassi, E., Padgett, R., Bertero, A., Reinecke, H., Klaiman, J. M., Yang, X., Hauschka, S. D., & Murry, C. E. (2024). Targeted CRISPR activation is functional in engineered human pluripotent stem cells but undergoes silencing after differentiation into cardiomyocytes and endothelium. Cellular and Molecular Life Sciences, 81(1), 95. https://doi.org/10.1007/s00018-023-05101-2 CR - Katayama, S., Watanabe, M., Kato, Y., Nomura, W., & Yamamoto, T. (2024). Engineering of Zinc Finger Nucleases Through Structural Modeling Improves Genome Editing Efficiency in Cells. Advanced Sciences, 11(23), e2310255. https://doi.org/10.1002/advs.202310255 CR - Kazimierczyk, M., & Wrzesinski, J. (2021). Long Non-Coding RNA Epigenetics. International Journal of Molecular Sciences, 22(11). https://doi.org/10.3390/ijms22116166 CR - Kearns, N. A., Pham, H., Tabak, B., Genga, R. M., Silverstein, N. J., Garber, M., & Maehr, R. (2015). Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nature Methods, 12(5), 401-403. https://doi.org/10.1038/nmeth.3325 CR - Khan, S. H. (2019). Genome-Editing Technologies: Concept, Pros, and Cons of Various Genome-Editing Techniques and Bioethical Concerns for Clinical Application. Molecular Therapy Nucleic Acids, 16, 326-334. https://doi.org/10.1016/j.omtn.2019.02.027 CR - Kikuchi, M., Morita, S., Wakamori, M., Sato, S., Uchikubo-Kamo, T., Suzuki, T., Dohmae, N., Shirouzu, M., & Umehara, T. (2023). Epigenetic mechanisms to propagate histone acetylation by p300/CBP. Nature Communication, 14(1), 4103. https://doi.org/10.1038/s41467-023-39735-4 CR - Kim, J. M., Kim, K., Schmidt, T., Punj, V., Tucker, H., Rice, J. C., Ulmer, T. S., & An, W. (2015). Cooperation between SMYD3 and PC4 drives a distinct transcriptional program in cancer cells. Nucleic Acids Research, 43(18), 8868-8883. https://doi.org/10.1093/nar/gkv874 CR - Kloet, S. L., Whiting, J. L., Gafken, P., Ranish, J., & Wang, E. H. (2012). Phosphorylation-dependent regulation of cyclin D1 and cyclin A gene transcription by TFIID subunits TAF1 and TAF7. Molecular and Cellular Biology, 32(16), 3358-3369. https://doi.org/10.1128/MCB.00416-12 CR - Kwon, D. Y., Zhao, Y. T., Lamonica, J. M., & Zhou, Z. (2017). Locus-specific histone deacetylation using a synthetic CRISPR-Cas9-based HDAC. Nature Communication, 8, 15315. https://doi.org/10.1038/ncomms15315 CR - Lakshminarasimhan, R., & Liang, G. (2016). The Role of DNA Methylation in Cancer. Advances in Experimental Medicine and Biology, 945, 151-172. https://doi.org/10.1007/978-3-319-43624-1_7 CR - Laufer, B. I., & Singh, S. M. (2015). Strategies for precision modulation of gene expression by epigenome editing: an overview. Epigenetics Chromatin, 8(1), 34. https://doi.org/10.1186/s13072-015-0023-7 CR - Lee, H. B., Sundberg, B. N., Sigafoos, A. N., & Clark, K. J. (2016). Genome Engineering with TALE and CRISPR Systems in Neuroscience [Review]. Frontiers in Genetics, 7, 47. https://doi.org/10.3389/fgene.2016.00047 CR - Lensch, S., Herschl, M. H., Ludwig, C. H., Sinha, J., Hinks, M. M., Mukund, A., Fujimori, T., & Bintu, L. (2022). Dynamic spreading of chromatin-mediated gene silencing and reactivation between neighboring genes in single cells. Elife, 11. https://doi.org/10.7554/eLife.75115 CR - Li, H., Yang, Y., Hong, W., Huang, M., Wu, M., & Zhao, X. (2020a). Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduction and Targeted Therapy, 5(1), 1. https://doi.org/10.1038/s41392-019-0089-y CR - Li, K., Liu, Y., Cao, H., Zhang, Y., Gu, Z., Liu, X., Yu, A., Kaphle, P., Dickerson, K. E., Ni, M., & Xu, J. (2020b). Interrogation of enhancer function by enhancer-targeting CRISPR epigenetic editing. Nature Communication, 11(1), 485. https://doi.org/10.1038/s41467-020-14362-5 CR - Li, R., Xia, X., Wang, X., Sun, X., Dai, Z., Huo, D., Zheng, H., Xiong, H., He, A., & Wu, X. (2020c). Generation and validation of versatile inducible CRISPRi embryonic stem cell and mouse model. PLoS Biology, 18(11), e3000749. https://doi.org/10.1371/journal.pbio.3000749 CR - Li, X., Li, C., & Sun, G. (2016). Histone Acetylation and Its Modifiers in the Pathogenesis of Diabetic Nephropathy. J Diabetes Res, 2016, 4065382. https://doi.org/10.1155/2016/4065382 CR - Li, Y. (2021). Modern epigenetics methods in biological research. Methods, 187, 104-113. https://doi.org/10.1016/j.ymeth.2020.06.022 CR - Liesenfelder, S., Elsafi Mabrouk, M. H., Iliescu, J., Baranda, M. V., Mizi, A., Perez-Correa, J. F., Wessiepe, M., Papantonis, A., & Wagner, W. (2025). Epigenetic editing at individual age-associated CpGs affects the genome-wide epigenetic aging landscape. Nature Aging, 5(6), 997-1009. https://doi.org/10.1038/s43587-025-00841-1 CR - Liu, P., Chen, M., Liu, Y., Qi, L. S., & Ding, S. (2018). CRISPR-Based Chromatin Remodeling of the Endogenous Oct4 or Sox2 Locus Enables Reprogramming to Pluripotency. Cell Stem Cell, 22(2), 252-261 e254. https://doi.org/10.1016/j.stem.2017.12.001 CR - Liu, R., Wu, J., Guo, H., Yao, W., Li, S., Lu, Y., Jia, Y., Liang, X., Tang, J., & Zhang, H. (2023). Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm, 4(3), e292. https://doi.org/10.1002/mco2.292 CR - Liu, W., Zhang, S., & Wang, J. (2022). IFN-gamma, should not be ignored in SLE. Frontiers in Immunology, 13, 954706. https://doi.org/10.3389/fimmu.2022.954706 CR - Loda, A., & Heard, E. (2019). Xist RNA in action: Past, present, and future. Plos Genetics, 15(9), e1008333. https://doi.org/10.1371/journal.pgen.1008333 CR - Lodde, V., Murgia, G., Simula, E. R., Steri, M., Floris, M., & Idda, M. L. (2020). Long Noncoding RNAs and Circular RNAs in Autoimmune Diseases. Biomolecules, 10(7). https://doi.org/10.3390/biom10071044 CR - Loscalzo, J., & Handy, D. E. (2014). Epigenetic modifications: basic mechanisms and role in cardiovascular disease (2013 Grover Conference series). Pulmonary Circulation, 4(2), 169-174. https://doi.org/10.1086/675979 CR - Lu, Y., Chan, Y. T., Tan, H. Y., Li, S., Wang, N., & Feng, Y. (2020). Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy. Molecular Cancer, 19(1), 79. https://doi.org/10.1186/s12943-020-01197-3 CR - Lunnon, K., Smith, R., Hannon, E., De Jager, P. L., Srivastava, G., Volta, M., Troakes, C., Al-Sarraj, S., Burrage, J., Macdonald, R., Condliffe, D., Harries, L. W., Katsel, P., Haroutunian, V., Kaminsky, Z., Joachim, C., Powell, J., Lovestone, S., Bennett, D. A.,…Mill, J. (2014). Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer's disease. Nature Neuroscience, 17(9), 1164-1170. https://doi.org/10.1038/nn.3782 CR - Ma, W., Wang, W., Zhao, L., Fan, J., Liu, L., Huang, L., Peng, B., Wang, J., Xu, B., Liu, H., Wu, D., & Zheng, Z. (2025). Reprogramming to restore youthful epigenetics of senescent nucleus pulposus cells for mitigating intervertebral disc degeneration and alleviating low back pain. Bone Research, 13(1), 35. https://doi.org/10.1038/s41413-025-00416-1 CR - Mabe, N. W., Perry, J. A., Malone, C. F., & Stegmaier, K. (2024). Pharmacological targeting of the cancer epigenome. Nature Cancer, 5(6), 844-865. https://doi.org/10.1038/s43018-024-00777-2 CR - Maeder, M. L., Angstman, J. F., Richardson, M. E., Linder, S. J., Cascio, V. M., Tsai, S. Q., Ho, Q. H., Sander, J. D., Reyon, D., Bernstein, B. E., Costello, J. F., Wilkinson, M. F., & Joung, J. K. (2013a). Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nature Biotechnology, 31(12), 1137-1142. https://doi.org/10.1038/nbt.2726 CR - Maeder, M. L., Angstman, J. F., Richardson, M. E., Linder, S. J., Cascio, V. M., Tsai, S. Q., Ho, Q. H., Sander, J. D., Reyon, D., Bernstein, B. E., Costello, J. F., Wilkinson, M. F., & Joung, J. K. (2013b). Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nature biotechnology, 31(12), 1137-+. https://doi.org/10.1038/nbt.2726 CR - Martinez-Iglesias, O., Naidoo, V., Carrera, I., Corzo, L., & Cacabelos, R. (2023). Natural Bioactive Products as Epigenetic Modulators for Treating Neurodegenerative Disorders. Pharmaceuticals (Basel, Switzerland), 16(2). https://doi.org/10.3390/ph16020216 CR - Martinez-Zamudio, R., & Ha, H. C. (2012). Histone ADP-ribosylation facilitates gene transcription by directly remodeling nucleosomes. Molecular and Cellular Biology, 32(13), 2490-2502. https://doi.org/10.1128/MCB.06667-11 CR - Matatiele, P., Tikly, M., Tarr, G., & Gulumian, M. (2015). DNA methylation similarities in genes of black South Africans with systemic lupus erythematosus and systemic sclerosis. Journal of Biomedical Science, 22(1), 34. https://doi.org/10.1186/s12929-015-0142-2 CR - McGurk, L., Rifai, O. M., & Bonini, N. M. (2019). Poly(ADP-Ribosylation) in Age-Related Neurological Disease. Trends in Genetics, 35(8), 601-613. https://doi.org/10.1016/j.tig.2019.05.004 CR - McPherson, R., & Tybjaerg-Hansen, A. (2016). Genetics of Coronary Artery Disease. Circulation Research, 118(4), 564-578. https://doi.org/10.1161/CIRCRESAHA.115.306566 CR - Mendenhall, E. M., Williamson, K. E., Reyon, D., Zou, J. Y., Ram, O., Joung, J. K., & Bernstein, B. E. (2013). Locus-specific editing of histone modifications at endogenous enhancers. Nature Biotechnology, 31(12), 1133-1136. https://doi.org/10.1038/nbt.2701 CR - Meriesh, H. A., Lerner, A. M., Chandrasekharan, M. B., & Strahl, B. D. (2020). The histone H4 basic patch regulates SAGA-mediated H2B deubiquitination and histone acetylation. Journal of Biological Chemistry, 295(19), 6561-6569. https://doi.org/10.1074/jbc.RA120.013196 CR - Miao, F., Chen, Z., Zhang, L., Liu, Z., Wu, X., Yuan, Y. C., & Natarajan, R. (2012). Profiles of epigenetic histone post-translational modifications at type 1 diabetes susceptible genes. Journal of Biological Chemistry, 287(20), 16335-16345. https://doi.org/10.1074/jbc.M111.330373 CR - Migliore, L., & Coppede, F. (2009). Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutation Research, 667(1-2), 82-97. https://doi.org/10.1016/j.mrfmmm.2008.10.011 CR - Miller, S., Tsou, P. S., Coit, P., Gensterblum-Miller, E., Renauer, P., Rohraff, D. M., Kilian, N. C., Schonfeld, M., & Sawalha, A. H. (2019). Hypomethylation of STAT1 and HLA-DRB1 is associated with type-I interferon-dependent HLA-DRB1 expression in lupus CD8+ T cells. Annals of the Rheumatic Diseases, 78(4), 519-528. https://doi.org/10.1136/annrheumdis-2018-214323 CR - Mirahmadi, M., Kahani, S. M., Sharifi-Zarchi, A., Firouzabadi, S. G., Behjati, F., & Garshasbi, M. (2025). Genetic Heterogeneity of Autism Spectrum Disorder: Identification of Five Novel Mutations (RIMS2, FOXG1, AUTS2, ZCCHC17, and SPTBN5) in Iranian Families via Whole-Exome and Whole-Genome Sequencing. Biochemical Genetics. https://doi.org/10.1007/s10528-025-11226-9 CR - Mock, U., Riecken, K., Berdien, B., Qasim, W., Chan, E., Cathomen, T., & Fehse, B. (2014). Novel lentiviral vectors with mutated reverse transcriptase for mRNA delivery of TALE nucleases. Scientific Reports, 4, 6409. https://doi.org/10.1038/srep06409 CR - Morgan, M. T., & Wolberger, C. (2017). Recognition of ubiquitinated nucleosomes. Current Opinion in Structural Biology, 42, 75-82. https://doi.org/10.1016/j.sbi.2016.11.016 CR - Morlando, M., & Fatica, A. (2018). Alteration of Epigenetic Regulation by Long Noncoding RNAs in Cancer. International Journal of Molecular Sciences, 19(2). https://doi.org/10.3390/ijms19020570 CR - Nakamura, M., Gao, Y., Dominguez, A. A., & Qi, L. S. (2021). CRISPR technologies for precise epigenome editing. Nature Cell Biology, 23(1), 11-22. https://doi.org/10.1038/s41556-020-00620-7 CR - Noori-Zadeh, A., Mesbah-Namin, S. A., & Saboor-Yaraghi, A. A. (2017). Epigenetic and gene expression alterations of FOXP3 in the T cells of EAE mouse model of multiple sclerosis. Journal of the Neurological Sciences, 375, 203-208. https://doi.org/10.1016/j.jns.2017.01.060 CR - Nunez, J. K., Chen, J., Pommier, G. C., Cogan, J. Z., Replogle, J. M., Adriaens, C., Ramadoss, G. N., Shi, Q., Hung, K. L., Samelson, A. J., Pogson, A. N., Kim, J. Y. S., Chung, A., Leonetti, M. D., Chang, H. Y., Kampmann, M., Bernstein, B. E., Hovestadt, V., Gilbert, L. A., & Weissman, J. S. (2021). Genome-wide programmable transcriptionalmemory by CRISPR-based epigenome editing. Cell, 184(9), 2503-2519 e2517. https://doi.org/10.1016/j.cell.2021.03.025 CR - O'Geen, H., Ren, C., Nicolet, C. M., Perez, A. A., Halmai, J., Le, V. M., Mackay, J. P., Farnham, P. J., & Segal, D. J. (2017). dCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression. Nucleic Acids Research, 45(17), 9901-9916. https://doi.org/10.1093/nar/gkx578 CR - Ordovas, J. M., & Smith, C. E. (2010). Epigenetics and cardiovascular disease. Nature Reviews: Cardiology, 7(9), 510-519. https://doi.org/10.1038/nrcardio.2010.104 CR - Palazzo, L., Mikolcevic, P., Mikoc, A., & Ahel, I. (2019). ADP-ribosylation signalling and human disease. Open Biology, 9(4), 190041. https://doi.org/10.1098/rsob.190041 CR - Pang, K., Wang, W., Qin, J. X., Shi, Z. D., Hao, L., Ma, Y. Y., Xu, H., Wu, Z. X., Pan, D., Chen, Z. S., & Han, C. H. (2022). Role of protein phosphorylation in cell signaling, disease, and the intervention therapy. MedComm (2020), 3(4), e175. https://doi.org/10.1002/mco2.175 CR - Pedre, X., Mastronardi, F., Bruck, W., Lopez-Rodas, G., Kuhlmann, T., & Casaccia, P. (2011). Changed histone acetylation patterns in normal-appearing white matter and early multiple sclerosis lesions. Journal of Neuroscience, 31(9), 3435-3445. https://doi.org/10.1523/JNEUROSCI.4507-10.2011 CR - Policarpi, C., Munafo, M., Tsagkris, S., Carlini, V., & Hackett, J. A. (2024). Systematic epigenome editing captures the context-dependent instructive function of chromatin modifications. Nature Genetics, 56(6), 1168-1180. https://doi.org/10.1038/s41588-024-01706-w CR - Poole, R. M. (2014). Belinostat: first global approval. Drugs, 74(13), 1543-1554. https://doi.org/10.1007/s40265-014-0275-8 CR - Porcheron, C., Le Devehat, M., Roubtsova, A., Bayat, H., Evagelidis, A., Jafarzadeh, L., Sachan, V., Labrecque, N., Fonta Holder, A., Susan-Resiga, D., Essalmani, R., Boudreau, G., Prat, A., Cusseddu, R., Cote, J. F., Khatib, A. M., Delisle, J. S., & Seidah, N. G. (2025). Blockade of colon cancer metastasis via single and double silencing of PCSK7/PCSK9: enhanced T cells cytotoxicity in mouse and human. Journal of Immunotherapy of Cancer, 13(6). https://doi.org/10.1136/jitc-2024-011364 CR - Qin, S., Xie, B., Wang, Q., Yang, R., Sun, J., Hu, C., Liu, S., Tao, Y., & Xiao, D. (2024). New insights into immune cells in cancer immunotherapy: from epigenetic modification, metabolic modulation to cell communication. MedComm (2020), 5(6), e551. https://doi.org/10.1002/mco2.551 CR - Qin, W., Scicluna, B. P., & van der Poll, T. (2021). The Role of Host Cell DNA Methylation in the Immune Response to Bacterial Infection [Review]. Frontiers in Immunology, 12, 696280. https://doi.org/10.3389/fimmu.2021.696280 CR - Ramzan, F., Vickers, M. H., & Mithen, R. F. (2021). Epigenetics, microRNA and Metabolic Syndrome: A Comprehensive Review. International Journal of Molecular Sciences, 22(9). https://doi.org/10.3390/ijms22095047 CR - Rasmi, Y., Shokati, A., Hassan, A., Aziz, S. G., Bastani, S., Jalali, L., Moradi, F., & Alipour, S. (2023). The role of DNA methylation in progression of neurological disorders and neurodegenerative diseases as well as the prospect of using DNA methylation inhibitors as therapeutic agents for such disorders. IBRO Neuroscience Reports, 14, 28-37. https://doi.org/10.1016/j.ibneur.2022.12.002 CR - Richard-Miceli, C., & Criswell, L. A. (2012). Emerging patterns of genetic overlap across autoimmune disorders. Genome Medicine, 4(1), 6. https://doi.org/10.1186/gm305 CR - Richardson, B. (2003). DNA methylation and autoimmune disease. Clinical Immunology, 109(1), 72-79. https://doi.org/10.1016/s1521-6616(03)00206-7 CR - Robusti, G., Vai, A., Bonaldi, T., & Noberini, R. (2022). Investigating pathological epigenetic aberrations by epi-proteomics. Clinical Epigenetics, 14(1), 145. https://doi.org/10.1186/s13148-022-01371-y CR - Rosenblum, M. D., Remedios, K. A., & Abbas, A. K. (2015). Mechanisms of human autoimmunity. Journal of Clinical Investigation, 125(6), 2228-2233. https://doi.org/10.1172/JCI78088 CR - Roth, G. V., Gengaro, I. R., & Qi, L. S. (2024). Precision epigenetic editing: Technological advances, enduring challenges, and therapeutic applications. Cell Chemical Biology. https://doi.org/10.1016/j.chembiol.2024.07.007 CR - Ryu, H. Y., & Hochstrasser, M. (2021). Histone sumoylation and chromatin dynamics. Nucleic Acids Research, 49(11), 6043-6052. https://doi.org/10.1093/nar/gkab280 CR - Ryu, H. Y., Zhao, D., Li, J., Su, D., & Hochstrasser, M. (2020). Histone sumoylation promotes Set3 histone-deacetylase complex-mediated transcriptional regulation. Nucleic Acids Research, 48(21), 12151-12168. https://doi.org/10.1093/nar/gkaa1093 CR - Saito, M., Xu, P., Faure, G., Maguire, S., Kannan, S., Altae-Tran, H., Vo, S., Desimone, A., Macrae, R. K., & Zhang, F. (2023). Fanzor is a eukaryotic programmable RNA-guided endonuclease. Nature, 620(7974), 660-668. https://doi.org/10.1038/s41586-023-06356-2 CR - Saito, Y., Saito, H., Liang, G., & Friedman, J. M. (2014). Epigenetic alterations and microRNA misexpression in cancer and autoimmune diseases: a critical review. Clinical Reviews in Allergy & Immunology, 47(2), 128-135. https://doi.org/10.1007/s12016-013-8401-z CR - Salesi, M., Dehabadi, M. H., Salehi, R., Salehi, A., & Pakzad, B. (2022). Differentially methylation of IFI44L gene promoter in Iranian patients with systemic lupus erythematosus and rheumatoid arthritis. Molecular Biology Reports, 49(4), 3065-3072. https://doi.org/10.1007/s11033-022-07134-5 CR - Salmaninejad, A., Jafari Abarghan, Y., Bozorg Qomi, S., Bayat, H., Yousefi, M., Azhdari, S., Talebi, S., & Mojarrad, M. (2021). Common therapeutic advances for Duchenne muscular dystrophy (DMD). International Journal of Neuroscience, 131(4), 370-389. https://doi.org/10.1080/00207454.2020.1740218 CR - Salmaninejad, A., Valilou, S. F., Bayat, H., Ebadi, N., Daraei, A., Yousefi, M., Nesaei, A., & Mojarrad, M. (2018). Duchenne muscular dystrophy: an updated review of common available therapies. International Journal of Neuroscience, 128(9), 854-864. https://doi.org/10.1080/00207454.2018.1430694 CR - Salvatori, B., Biscarini, S., & Morlando, M. (2020). Non-coding RNAs in Nervous System Development and Disease [Review]. Front Cell Dev Biol, 8, 273. https://doi.org/10.3389/fcell.2020.00273 CR - Samie, M., Parman, T., Jalan, M., Lee, J., Dunn, P., Eshleman, J., Vidales, D. B., Holter, J., Jones, B., Pan, Y., Falaleeva, M., Hinkley, S., Goodwin, A., Chen, T., Bhardwaj, S., Ward, A., Trias, M., Chikere, A., Som, M.,…Pooler, A. (2024). Potent and selective repression of SCN9A by engineered zinc finger repressors for the treatment of neuropathic pain. BioRxiv. https://doi.org/10.1101/2024.09.06.609976 CR - San-Miguel, J. F., Hungria, V. T., Yoon, S. S., Beksac, M., Dimopoulos, M. A., Elghandour, A., Jedrzejczak, W. W., Gunther, A., Nakorn, T. N., Siritanaratkul, N., Corradini, P., Chuncharunee, S., Lee, J. J., Schlossman, R. L., Shelekhova, T., Yong, K., Tan, D., Numbenjapon, T., Cavenagh, J. D., Richardson, P. G. (2014). Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: a multicentre, randomised, double-blind phase 3 trial. Lancet Oncology, 15(11), 1195-1206. https://doi.org/10.1016/S1470-2045(14)70440-1 CR - Sanjana, N. E., Cong, L., Zhou, Y., Cunniff, M. M., Feng, G., & Zhang, F. (2012). A transcription activator-like effector toolbox for genome engineering. Nature Protocols, 7(1), 171-192. https://doi.org/10.1038/nprot.2011.431 CR - Saunderson, E. A., Encabo, H. H., Devis, J., Rouault-Pierre, K., Piganeau, M., Bell, C. G., Gribben, J. G., Bonnet, D., & Ficz, G. (2023). CRISPR/dCas9 DNA methylation editing is heritable during human hematopoiesis and shapes immune progeny. Proceedings of the National Academy of Sciences of the United States of America, 120(34), e2300224120. https://doi.org/10.1073/pnas.2300224120 Seem, K., Kaur, S., Kumar, S., & Mohapatra, T. (2024). Epigenome editing for targeted DNA (de)methylation: a new perspective in modulating gene expression. Critical Reviews in Biochemistry and Molecular Biology, 59(1-2), 69-98. https://doi.org/10.1080/10409238.2024.2320659 CR - Shah, R. R. (2019). Safety and Tolerability of Histone Deacetylase (HDAC) Inhibitors in Oncology. Drug Safety, 42(2), 235-245.https://doi.org/10.1007/s40264-018-0773-9 CR - Shams, F., Bayat, H., Mohammadian, O., Mahboudi, S., Vahidnezhad, H., Soosanabadi, M., & Rahimpour, A. (2022). Advance trends in targeting homology-directed repair for accurate gene editing: An inclusive review of small molecules and modified CRISPR-Cas9 systems. Bioimpacts, 12(4), 371-391. https://doi.org/10.34172/bi.2022.23871 CR - Sharma, V. K., Mehta, V., & Singh, T. G. (2020). Alzheimer's Disorder: Epigenetic Connection and Associated Risk Factors. Current Neuropharmacology, 18(8), 740-753. https://doi.org/10.2174/1570159X18666200128125641 CR - Shi, L., Li, S., Zhu, R., Lu, C., Xu, X., Li, C., Huang, X., Zhao, X., Mao, F., & Li, K. (2025). CRISPRepi: a multi-omic atlas for CRISPR-based epigenome editing. Nucleic Acids Research, 53(D1), D901-D913. https://doi.org/10.1093/nar/gkae1039 CR - Shrivastava, S., Ray, R. M., Holguin, L., Echavarria, L., Grepo, N., Scott, T. A., Burnett, J., & Morris, K. V. (2021). Exosome-mediated stable epigenetic repression of HIV-1. Nature Communication, 12(1), 5541. https://doi.org/10.1038/s41467-021-25839-2 CR - Shukla, S., & Tekwani, B. L. (2020). Histone Deacetylases Inhibitors in Neurodegenerative Diseases, Neuroprotection and Neuronal Differentiation. Frontiers in Pharmacology, 11, 537. https://doi.org/10.3389/fphar.2020.00537 CR - Siddiqi, K. Z., Wilhelm, T. R., Ulff-Moller, C. J., & Jacobsen, S. (2021). Cluster of highly expressed interferon-stimulated genes associate more with African ancestry than disease activity in patients with systemic lupus erythematosus. A systematic review of cross-sectional studies. Translational Research: The Journal of Laboratory and Clinical Medicine, 238, 63-75. https://doi.org/10.1016/j.trsl.2021.07.006 CR - Singh, J., & Santosh, P. (2025). Molecular Insights into Neurological Regression with a Focus on Rett Syndrome-A Narrative Review. International Journal of Molecular Sciences, 26(11). https://doi.org/10.3390/ijms26115361 CR - Skeens, E., Sinha, S., Ahsan, M., D'Ordine, A. M., Jogl, G., Palermo, G., & Lisi, G. P. (2024). High-fidelity, hyper-accurate, and evolved mutants rewire atomic-level communication in CRISPR-Cas9. Science Advances, 10(10), eadl1045. https://doi.org/10.1126/sciadv.adl1045 CR - Snowden, A. W., Gregory, P. D., Case, C. C., & Pabo, C. O. (2002). Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Current Biology, 12(24), 2159-2166. https://doi.org/10.1016/s0960-9822(02)01391-x CR - Song, S., De, S., Nelson, V., Chopra, S., LaPan, M., Kampta, K., Sun, S., He, M., Thompson, C. D., Li, D., Shih, T., Tan, N., Al-Abed, Y., Capitle, E., Aranow, C., Mackay, M., Clapp, W. L., & Barnes, B. J. (2020). Inhibition of IRF5 hyperactivation protects from lupus onset and severity. Journal of Clinical Investigation, 130(12), 6700-6717. https://doi.org/10.1172/JCI120288 CR - Sum, H., & Brewer, A. C. (2023). Epigenetic modifications as therapeutic targets in atherosclerosis: a focus on DNA methylation and non-coding RNAs. Frontiers in Cardiovascular Medicine, 10, 1183181. https://doi.org/10.3389/fcvm.2023.1183181 CR - Syding, L. A., Nickl, P., Kasparek, P., & Sedlacek, R. (2020). CRISPR/Cas9 Epigenome Editing Potential for Rare Imprinting Diseases: A Review. Cells, 9(4). https://doi.org/10.3390/cells9040993 Tadic, V., Josipovic, G., Zoldos, V., & Vojta, A. (2019). CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity. Methods, 164-165, 109-119. https://doi.org/10.1016/j.ymeth.2019.05.003 CR - Tang, C., Li, Y., Lin, X., Ye, J., Li, W., He, Z., Li, F., & Cai, X. (2014). Hypomethylation of interleukin 6 correlates with renal involvement in systemic lupus erythematosus. Central European Journal of Immunology, 39(2), 203-208. https://doi.org/10.5114/ceji.2014.43724 CR - Tang, H., Wang, D., & Shu, Y. (2022). Structural insights into Cas9 mismatch: promising for development of high-fidelity Cas9 variants. Signal Transduction and Targeted Therapy, 7(1), 271. https://doi.org/10.1038/s41392-022-01139-z CR - Tenchov, R., Sasso, J. M., Wang, X., Liaw, W. S., Chen, C. A., & Zhou, Q. A. (2022). Exosomes horizontal line Nature's Lipid Nanoparticles, a Rising Star in Drug Delivery and Diagnostics. ACS Nano, 16(11), 17802-17846. https://doi.org/10.1021/acsnano.2c08774 CR - Tremblay, F., Xiong, Q., Shah, S. S., Ko, C. W., Kelly, K., Morrison, M. S., Giancarlo, C., Ramirez, R. N., Hildebrand, E. M., Voytek, S. B., El Sebae, G. K., Wright, S. H., Lofgren, L., Clarkson, S., Waters, C., Linder, S. J., Liu, S., Eom, T., Parikh, S., Jaffe, A. B. (2025). A potent epigenetic editor targeting human PCSK9 for durable reduction of low-density lipoprotein cholesterol levels. Nature Medicine, 31(4), 1329-1338. https://doi.org/10.1038/s41591-025-03508-x CR - Udali, S., Guarini, P., Moruzzi, S., Choi, S. W., & Friso, S. (2013). Cardiovascular epigenetics: from DNA methylation to microRNAs. Molecular Aspects of Medicine, 34(4), 883-901. https://doi.org/10.1016/j.mam.2012.08.001 CR - Ueda, J., Yamazaki, T., & Funakoshi, H. (2023). Toward the Development of Epigenome Editing-Based Therapeutics: Potentials and Challenges. International Journal of Molecular Sciences, 24(5). https://doi.org/10.3390/ijms24054778 CR - Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., & Gregory, P. D. (2010). Genome editing with engineered zinc finger nucleases. Nature Reviews: Genetics, 11(9), 636-646. https://doi.org/10.1038/nrg2842 CR - van Esch, A. P., Prudence, S. M. M., Contesini, F. J., Gerhartz, B., Royle, K. E., & Mortensen, U. H. (2025). A CRISPR Cas12a/Cpf1 strategy to facilitate robust multiplex gene editing in Aspergillus Niger. Fungal Biology and Biotechnology, 12(1), 5. https://doi.org/10.1186/s40694-025-00196-7 CR - Vukic, M., & Daxinger, L. (2019). DNA methylation in disease: Immunodeficiency, Centromeric instability, Facial anomalies syndrome. Essays in Biochemistry, 63(6), 773-783. https://doi.org/10.1042/EBC20190035 CR - Wardowska, A. (2020). The epigenetic face of lupus: Focus on antigen-presenting cells. International Immunopharmacology, 81, 106262. https://doi.org/10.1016/j.intimp.2020.106262 CR - Whittaker, M. N., Testa, L. C., Quigley, A., Jindal, I., Cortez-Alvarado, S. V., Qu, P., Yang, Y., Alameh, M. G., Musunuru, K., & Wang, X. (2023). Epigenome Editing Durability Varies Widely Across Cardiovascular Disease Target Genes. Arteriosclerosis, Thrombosis, and Vascular Biology, 43(10), 2075-2077. https://doi.org/10.1161/ATVBAHA.123.319748 CR - Woodward, E. A., Wang, E., Wallis, C., Sharma, R., Tie, A. W. J., Murthy, N., & Blancafort, P. (2024). Protocol for Delivery of CRISPR/dCas9 Systems for Epigenetic Editing into Solid Tumors Using Lipid Nanoparticles Encapsulating RNA. Methods in Molecular Biology, 2842, 267-287. https://doi.org/10.1007/978-1-0716-4051-7_14 CR - Wu, X., Zhang, X., Huang, B., Han, J., & Fang, H. (2023a). Advances in biological functions and mechanisms of histone variants in plants. Frontiers in Genetics, 14, 1229782. https://doi.org/10.3389/fgene.2023.1229782 CR - Wu, Y. L., Lin, Z. J., Li, C. C., Lin, X., Shan, S. K., Guo, B., Zheng, M. H., Li, F., Yuan, L. Q., & Li, Z. H. (2023b). Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. Signal Transduction and Targeted Therapy, 8(1), 98. https://doi.org/10.1038/s41392-023-01333-7 CR - Xiao, L., Xiao, W., & Lin, S. (2022). Potential biomarkers for active renal involvement in systemic lupus erythematosus patients. Frontiers in Medicine, 9, 995103. https://doi.org/10.3389/fmed.2022.995103 CR - Xu, Y., Yang, Y., Wang, Z., Sjostrom, M., Jiang, Y., Tang, Y., Cheng, S., Deng, S., Wang, C., Gonzalez, J., Johnson, N. A., Li, X., Li, X., Metang, L. A., Mukherji, A., Xu, Q., Tirado, C. R., Wainwright, G., Yu, X.,…Mu, P. (2024). ZNF397 Deficiency Triggers TET2-Driven Lineage Plasticity and AR-Targeted Therapy Resistance in Prostate Cancer. Cancer Discovery, 14(8), 1496-1521. https://doi.org/10.1158/2159-8290.CD-23-0539 CR - Yang, X., Liu, M., Li, M., Zhang, S., Hiju, H., Sun, J., Mao, Z., Zheng, M., & Feng, B. (2020). Epigenetic modulations of noncoding RNA: a novel dimension of Cancer biology. Molecular Cancer, 19(1), 64. https://doi.org/10.1186/s12943-020-01159-9 CR - Younesian, S., Yousefi, A. M., Momeny, M., Ghaffari, S. H., & Bashash, D. (2022). The DNA Methylation in Neurological Diseases. Cells, 11(21). https://doi.org/10.3390/cells11213439 CR - Zhan, Y., Guo, Y., & Lu, Q. (2016). Aberrant Epigenetic Regulation in the Pathogenesis of Systemic Lupus Erythematosus and Its Implication in Precision Medicine. Cytogenetic and Genome Research, 149(3), 141-155. https://doi.org/10.1159/000448793 CR - Zhang, J., Chen, L., Zhang, J., & Wang, Y. (2019). Drug Inducible CRISPR/Cas Systems. Computational and Structural Biotechnology Journal, 17, 1171-1177. https://doi.org/10.1016/j.csbj.2019.07.015 CR - Zhang, J., Chen, L. M., Zou, Y., Zhang, S., Xiong, F., & Wang, C. Y. (2021). Implication of epigenetic factors in the pathogenesis of type 1 diabetes. Chinese Medical Journal (Engl.), 134(9), 1031-1042. https://doi.org/10.1097/CM9.0000000000001450 CR - Zhang, R., Yao, T., Fan, M., Jiang, X., Wang, K., Cui, M., Bing, K., & Xia, X. (2025). Precision scalpels for the epigenome: next-gen editing tools in targeted therapies. Frontiers in Medicine, 12, 1613722. https://doi.org/10.3389/fmed.2025.1613722 CR - Zhang, Y., Liu, L., Guo, S., Song, J., Zhu, C., Yue, Z., Wei, W., & Yi, C. (2017). Deciphering TAL effectors for 5-methylcytosine and 5-hydroxymethylcytosine recognition. Nature Communication, 8(1), 901. https://doi.org/10.1038/s41467-017-00860-6 CR - Zhao, J., Wei, K., Chang, C., Xu, L., Jiang, P., Guo, S., Schrodi, S. J., & He, D. (2022). DNA Methylation of T Lymphocytes as a Therapeutic Target: Implications for Rheumatoid Arthritis Etiology. Frontiers in Immunology, 13, 863703. https://doi.org/10.3389/fimmu.2022.863703 CR - Zhao, Q., Ma, Y., Li, Z., Zhang, K., Zheng, M., & Zhang, S. (2020). The Function of SUMOylation and Its Role in the Development of Cancer Cells under Stress Conditions: A Systematic Review. Stem Cells International, 2020, 8835714. https://doi.org/10.1155/2020/8835714 CR - Zhou, H., He, X., Xiong, Y., Gong, Y., Zhang, Y., Li, S., Hu, R., Li, Y., Zhang, X., Zhou, X., Zhu, J., Yang, Y., & Liu, M. (2025). Structural insights into a highly flexible zinc finger module unravel INSM1 function in transcription regulation. Nature Communication, 16(1), 2162.https://doi.org/10.1038/s41467-025-57478-2 UR - https://dergipark.org.tr/en/pub/biotechstudies/issue//1830114 L1 - https://dergipark.org.tr/en/download/article-file/5450471 ER -