@article{article_259004, title={SPECTRAL PROPERTIES OF SCHRODINGER OPERATOR WITH A GENERAL BOUNDARY CONDITIONS ON FINITE TIME SCALE}, journal={Gazi University Journal of Science}, volume={29}, pages={467–472}, year={2016}, author={KΔ±r Arpat, Esra and Terzi, Hatice}, keywords={Time scale, delta and nabla derivatives, SchrΓΆdinger operator, eigenvalue, eigenfunction.}, abstract={<p>In this paper we consider the operator L generated in πΏβˆ‡2 [π‘Ž, 𝑏] by the boundary problemβˆ’[π‘¦βˆ†(𝑑)]βˆ‡ + [πœ† + π‘ž(𝑑)]2𝑦(𝑑) = 0, 𝑑 ∈ [π‘Ž, 𝑏],𝑦(π‘Ž) βˆ’ π‘˜π‘¦βˆ†(π‘Ž) = 0, 𝑦(𝑏) + πΎπ‘¦βˆ†(𝑏) = 0 where π‘ž(𝑑) is partial continuous, π‘ž(𝑑) β‰₯ 0, π‘˜ β‰₯ 0,𝐾 β‰₯ 0. In this paper, spectral properties of Schrodinger problem on finite time scale is examined and the formula of convergent expansion is obtained which is form of series in terms of the eigenfunctions in πΏβˆ‡2 [π‘Ž, 𝑏] space. <br /> </p>}, number={2}, publisher={Gazi University}