TY - JOUR T1 - Hourly Day Ahead Solar Irradiance Forecasting Model in LabVIEW Using Cloud Cover Data AU - Ceylan, Oğuzhan AU - Starke, Michael AU - Irminger, Phil AU - Ollis, Ben AU - King, Dan AU - Tomsovic, Kevin PY - 2016 DA - September JF - IU-Journal of Electrical & Electronics Engineering PB - İstanbul University-Cerrahpasa WT - DergiPark SN - 1303-0914 SP - 2047 EP - 2054 VL - 16 IS - 2 LA - en AB - This paper applies a regression based numerical method for hourly forecasting photovoltaic power output. This methodology uses a historical dataset composed of irradiance, azimuth, zenith angle and time of day information. A developed forecast program from this methodology pulls publicly available cloud cover forecast data for the following day and uses a numerical regression based method for fitting the data. Using publicly available temperature forecast data, forecasted irradiance data, and computed solar position (zenith, azimuth) data, both power output and temperature module output of PV array is computed. Numerical forecast results are compared to actual collected data. KW - solar forecasting KW - numerical regression KW - LabVIEW UR - https://dergipark.org.tr/en/pub/iujeee/issue//259642 L1 - https://dergipark.org.tr/en/download/article-file/226119 ER -