TY - JOUR TT - THERMODYNAMIC PROPERTIES OF A NUCLEON UNDER THE GENERALIZED SYMMETRIC WOODS-SAXON POTENTIAL IN FLOURINE 17 ISOTOPE AU - Lütfüoğlu, Bekir Can AU - Erdoğan, Muzaffer PY - 2016 DA - December DO - 10.18038/aubtda.266151 JF - Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering JO - AUJST-A PB - Eskisehir Technical University WT - DergiPark SN - 1302-3160 SP - 708 EP - 716 VL - 17 IS - 4 KW - Generalized symmetric Woods-Saxon potential KW - bound and quasi bound states KW - analytical solutions KW - partition and thermodynamic functions KW - Fluorine 17 nucleus N2 - Theexact analytical solution of the Schrödinger equation for a generalizedsymmetrical Woods-Saxon potential are examined for a nucleon in Fluorine 17 nucleusfor bound and quasi-bound states in one dimension. The wave functions implythat the nucleon is completely confined within the nucleus, i.e., no decayprobability for bound states, while tunneling probabilities arise for thequasi-bound state. We have calculated the temperature dependent Helmholtz freeenergies, the internal energies, the entropies and the specific heat capacitiesof the system. It is shown that, when the quasi-bound state is included,the internal energy and entropy increase, while the Helmholtz energy decreasesat high temperatures. Very high excitation temperatures imply that the nucleusdoes not tend to release a nucleon. The calculated quasibound state energy is in reasonable agreement with the experimental data on thecumulative fission energy issued by IAEA. CR - Pacheco M H, Landim R R, Almeida C A S. One-dimensional Dirac oscillator in a thermal bath. Phys. Lett. A, 2003; 311: 93-96. CR - Pacheco M H, Maluf R V, Almeida C A S. Three-dimensional Dirac oscillator in a thermal bath. EPL. 2014; 108: 10005. CR - Boumali A. The One-dimensional Thermal Properties for the Relativistic Harmonic Oscillators. EJTP, 2015; 12: 121-130. CR - Boumali A. Thermodynamic properties of the graphene in a magnetic field via the two-dimensional Dirac oscillator. Phys. Scr. 2015; 90: 045702-109501 Corrigendum. CR - Boumali A. Thermal Properties of the One-Dimensional Duffin–Kemmer–Petiau Oscillator Using Hurwitz Zeta Function Z. Naturforsch A 2015; 70: 867-874. CR - Arda A, Tezcan C, Sever R. Klein–Gordon and Dirac Equations with Thermodynamic Quantities. Few-Body Syst. 2016; 57: 93-101 CR - Dong S H, Lozada-Cassou M, Yu J, Jimenez-Angeles F, Rivera A L. Hidden Symmetries and Thermodynamic Properties for a Harmonic Oscillator Plus an Inverse Square Potential. Int. J. Quant. Chem. 2006; 107: 366-371. CR - Woods R D, Saxon D S. Diffuse Surface Optical Model for Nucleon-Nuclei Scattering. Phys. Rev. 1954; 95: 577-578. CR - Brandan M E, Satchler G R. The Interaction between light heavy-ions and what it tell us. Phys. Reports 1997; 285: 143-243. CR - [10] Zaichenko A K, Ol'khovskii V S. Analytic solutions of the problem of scattering potentials of the Eckart Class. Theor. Math. Phys. 1976; 27: 475-477. CR - [11] Bayrak O, Aciksoz E. Corrected analytical solution of the generalized Woods–Saxon potential for arbitrary l-states. Phys. Scr. 2015; 90: 015302. CR - [12] Pahlavani M R, Alavi S A. Solutions of Woods–Saxon Potential with Spin-Orbit and Centrifugal Terms through Nikiforov–Uvarov Method. Commun. Theor. Phys. 2012; 58: 739-743. CR - [13] Satchler G R. Heavy-ion scattering and reactions near the Coulomb barrier and “threshold anomalies”. Phys. Reports 1991; 199: 147-190. CR - Lütfüoğlu B C, Akdeniz F, Bayrak O.Scattering, bound, and quasi-bound states of the generalized symmetric Woods-Saxon potential. J. Math. Phys. 2016; 57: 032103. CR - CostaL S, Prudente F V, Acioli P H, Soares Neto J J, Vianna J D M. A study of confined quantum systems using the Woods–Saxon potential. Phys. B: At. Mol. Opt. Phys. 1999; 32: 2461-2470. CR - Flügge S. Practical Quantum Mechanics Vol. I.Berlin, Germany: Springer, 1994. CR - Kennedy P. The Woods-Saxon potential in the Dirac equation. J. Phys. A: Math. Gen. 2002; 35: 689-698. CR - Kennedy P, Dombey N. Low Momentum Scattering in the Dirac Equation. J. Phys. A: Math. Gen. 2002; 35: 6645-6658. CR - Panella O, Biondini S, Arda A. New exact solution of the one-dimensional Dirac equation for the Woods–Saxon potential within the effective mass case. J. Phys. A: Math. Theor. 2010; 43: 325302. CR - Aydoğdu O, Arda A, Sever R. Effective-mass Dirac equation for Woods-Saxon potential: Scattering, bound states, and resonances. J. Math. Phys. 2012; 53: 042106. CR - Guo J Y, Sheng Z Q. Solution of the Dirac equation for the Woods-Saxon potential with spin and pseudospin symmetry. Phys. Lett. 2005; A338: 90-96. CR - Guo J Y, Zheng F X, Fu-Xin X. Solution of the relativistic Dirac-Woods-Saxon problem. Phys. Rev. 2002; A66: 062105. CR - Candemir N, Bayrak O. Bound states of the Dirac equation for the generalized Woods-Saxon potential in pseudospin and spin symmetry limits. Mod. Phys. Lett. 2014; A29: 1450180. CR - Rojas C, Villalba V M. Scattering of a Klein-Gordon particle by a Woods-Saxon potential. Phys. Rev. 2005, A71, 052101. CR - [25] Hassanabadi H, Maghsoodi E, Zarrinkamar S, Salehi N.Scattering of Relativistic Spinless Particles by the Woods-Saxon Potential. Few-Body Syst. 2013; 54: 2009-2016. CR - [26] Kobos A M, Mackintosh R S.Evaluation of model-independent optical potentials for the 16O+40Ca system. Phys. Rev. 1982; C26: 1766-1769. CR - [27] Boztosun I.New results in the analysis of 16O+28Sielastic scattering by modifying the optical potential. Phys. Rev. 2002; C66: 024610. CR - [28] Boztosun I, Bayrak O, Dagdemir Y. A Comparative study of the 12C+24Mg system with deep and shallow potentials. Int. J. Mod. Phys. 2005; E14: 663-673. CR - [29] Kocak G, Karakoc M, Boztosun I, Balantekin A B. Effects of alpha cluster potentials for the 16O+16O fusion reaction and S factor. Phys. Rev. 2010; C81: 024615. CR - [30] Dapo H, Boztosun I, Kocak G, Balantekin A B.Influence of long-range effects on low-energy cross sections of He and HeX: The lithium problem. Phys. Rev. 2012; C85: 044602. CR - [31] Christian P E, Waterstram-Rich K M. Nuclear Medicine and PET/CT: Technology and Techniques. 7th ed. St.Louis, Missouri, USA: Elsevier 2012 CR - [32] Tilley D R, Weller H R, Cheves C M. Energy Levels of Light Nuclei A=17. Nucl. Phys. 1993; A564: 1-183. CR - [33] https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html UR - https://doi.org/10.18038/aubtda.266151 L1 - https://dergipark.org.tr/en/download/article-file/235474 ER -