TY - JOUR TT - QUASI-ARMENDARIZ PROPERTY ON POWERS OF COEFFICIENTS AU - Kwak, Tai Keun AU - Lee, Min Jung AU - Lee, Yang PY - 2014 DA - June DO - 10.24330/ieja.266248 JF - International Electronic Journal of Algebra JO - IEJA PB - Abdullah HARMANCI WT - DergiPark SN - 1306-6048 SP - 208 EP - 217 VL - 15 IS - 15 KW - power-quasi-Armendariz ring KW - power of coefficient KW - quasi-Armendariz ring KW - Armendariz ring KW - polynomial ring KW - matrix ring N2 - The study of Armendariz rings was initiated by Rege and Chhawchharia, based on a result of Armendariz related to the structure of reduced rings. Armendariz rings were generalized to quasi-Armendariz rings by Hirano. We introduce the concept of power-quasi-Armendariz (simply, p.q.- Armendariz) ring as a generalization of quasi-Armendariz, applying the role of quasi-Armendariz on the powers of coefficients of zero-dividing polynomials. In the process we investigate the power-quasi-Armendariz property of several ring extensions, e.g., matrix rings and polynomial rings, which have roles in ring theory. CR - D.D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra, 26 (1998), 2265-2272. CR - E.P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Aust. Math. Soc., 18 (1974), 470-473. CR - M. Ba¸ser, F. Kaynarca, T.K. Kwak and Y. Lee, Weak quasi-Armendariz rings, Algebra Colloq., 18 (2011), 541-552. CR - H.E. Bell, Near-rings in which each element is a power of itself, Bull. Aust. Math. Soc., 2 (1970), 363-368. CR - K.R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979. CR - J.C. Han, T.K. Kwak, M.J. Lee, Y. Lee and Y.S. Seo, On powers of coefficients of zero-dividing polynomials, submitted. Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra, 168 (2002), 45-52. CR - C. Huh, Y. Lee and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra, 30 (2002), 751-761. CR - D.W. Jung, T.K. Kwak, M.J. Lee and Y. Lee, Ring properties related to sym- metric rings, submitted. N.K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra, 223 (2000), 477–488. CR - N.K. Kim and Y.Lee, Extension of reversible rings, J. Pure Appl. Algebra, 185 (2003), 207-223. CR - T.K. Kwak, Y. Lee and S.J. Yun, The Armendariz property on ideals, J. Alge- bra, 354 (2012), 121-135. CR - J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull., 14 (1971), 359-368. CR - J.C. Shepherdson, Inverses and zero-divisors in matrix ring, Proc. London Math. Soc., 3 (1951), 71-85. CR - M.B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci., 73 (1997), 14-17. CR - G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc., 184 (1973), 43-60. Tai Keun Kwak CR - Department of Mathematics Daejin University Pocheon 487-711, Korea e-mail: tkkwak@daejin.ac.kr Min Jung Lee and Yang Lee Department of Mathematics Education Pusan National University Pusan 609-735, Korea e-mails: nice1mj@nate.com (Min Jung Lee) ylee@pusan.ac.kr (Yang Lee) UR - https://doi.org/10.24330/ieja.266248 L1 - https://dergipark.org.tr/en/download/article-file/232771 ER -