TY - JOUR TT - NEW CRITERIA FOR p-NILPOTENCE OF FINITE GROUPS AU - Liu, Shitian PY - 2010 DA - June JF - International Electronic Journal of Algebra JO - IEJA PB - Abdullah HARMANCI WT - DergiPark SN - 1306-6048 SP - 120 EP - 127 VL - 7 IS - 7 KW - F(G)-g pronormal subgroups KW - Sylow p-subgroup KW - maximal subgroups KW - p-nilpotence N2 - A subgroup H is X-g pronormal in G if, for H, X ≤ G and g ∈ G, H ∩ X and Hg ∩ X are conjugate in J = hH ∩ X, Hg ∩ Xi. In this paper, we investigate the structure of a finite group G under the assumption that certain subgroups are X-g pronormal, where X = F(G) is the Fitting subgroup of G. CR - M. Asaad, On the supersolvability of finite groups, I, Acta Math. Acad. Sci. Hungar., 38(1-4) (1981), 57-59. CR - M. Asaad, Some results on p-nilpotence and supersolvability of fintie groups, Comm. Algebra, 34 (2006), 4217-4224. CR - M. Asaad, On p-nilpotence and supersolvability of finite groups, Comm. Alge- bra, 34 (2006), 189-195. CR - M. Asaad, M. Ramadan, and A. Shaalan, Influence of π-quasinormality of maximal subgroups of Sylow subgroups of Fitting subgroup of a finite group, Arch. Math., 56 (1991), 521-527. CR - M. Bianchi, A. G. B. Mauri, M. Herzog, and L. Verard, On finite solvable groups in which normality is a transitive relation, J. Group Theory, 3 (2000), 156. CR - P. Cs¨org¨o, and M. Herzog, On supersolvable groups and the nilpotator, Comm. Algebra, 32(2) (2004), 609-620. CR - A. D’Anillo, Groups in which n-maximal subgroups are dualpronormal, Rend. Sem. Mat. Padova, 84 (1990), 83-90. CR - R. Dark, and A. D. Feldman, Charcterization of injectors in finite soluble groups, J. Group Theory, 9 (2006), 775-785. CR - K. Doerk, and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, New York, 1992. CR - D. Gorenstein, Finite Groups, 2nd, AMS Chelsea Pub., Rhode Island, 1980. CR - H. Huppert, Endliche Gruppen I, Springer-Verlag, New York, 1967. CR - D. Li and X. Guo, The influence of c-normality of subgroups on the structure of finite groups II, Comm. Algebra, 26 (1998), 1913-1922. CR - D. J. Robinson, A Course in the Theory of Groups, 2nd, Springer-Verlag, New York, 1996. CR - H. Wei, and Y. Wang, On c*-normality and its properties, J. Group Theory, (2007), 211-223. CR - A. Yokoyama, Finite solvable groups whose F-hypercenter containing all mini- mal subgroups, Arch. Math., 26 (1975), 123-130. CR - H. J. Zassenhaus, The Theory of Groups, 2nd, Chelsea Pub.Co., New York, Shitian Liu School of Science Sichuan University of Science & Engineering Zigong, 643000, P.R.China e-mail: liust@suse.edu.cn UR - https://dergipark.org.tr/en/pub/ieja/issue//266341 L1 - https://dergipark.org.tr/en/download/article-file/232863 ER -