TY - JOUR TT - FLOW FORECASTING OF GÖKSU RIVER WITH ARTIFICIAL NEURAL NETWORKS METHOD AU - Terzi, Özlem AU - Köse, Mehmet PY - 2012 DA - September JF - Uluslararası Teknolojik Bilimler Dergisi JO - IJTS PB - Isparta University of Applied Sciences WT - DergiPark SN - 1309-1220 SP - 1 EP - 7 VL - 4 IS - 3 KW - Akım KW - yapay sinir ağları KW - Göksu Nehri N2 - Nowadays, it is important issues such as the use and operation of water resources because of appreciably increasing in drought and global warming. The river flow is determined by flow measurement stations established by relevant institutions on rivers. However, it is a difficult to operate these stations in such cases the absence of data and failure of the stations. In such cases, in order to complete the missing data, the flow estimation of Göksu River was made with artificial neural networks (ANN) method that most widely used in water resources engineering in recent years. For this purpose, it was used to develop ANN models daily flow values for the years 1990-2010 from Karahacılı (1714), Kırkkavak (1719) and Hamam (1720) measurement stations on the Göksu River. It was used determination coefficient and the mean absolute error to evaluate performance of the developed models. Comparing performances of the models, it was shown that ANN method can be used to estimate river flow. CR - Anctil, F., Perrin, C. and Andreassian, V. (2003). ANN Output Updating of Lumped Conceptual Rainfall/Runoff Forecasting Models. Journal of the American Water Resources Association, 39(5), 1269-1279. CR - Bayazıt, M. (1998). Hidrolojik Modeller, İTÜ İnşaat Fakültesi Matbaası, 228 s., İstanbul. CR - Dawson C.W. and Wilby R.L. (2001). Hydrological Modelling Using Artificial Neural Networks, Progress in Physical Geography, 25, 80-108. CR - Fausett, L. (1994). Fundamentals of Neural Networks: Architectures, Algorithms, and Applications. Prentice Hall, New Jersey, p.461. CR - Golob R., Stokelj T. and Grgic D. (1998). Neural Network- Based İnflow Forecasting, Control Engineering Practice, 6, 593-600. CR - http://tr.wikipedia.org/wiki/G%C3%B6ksu_(Kilikya) CR - Jothiprakash V. and Garg V. 2009. Reservoir Sedimentation Estimation Using Artificial Neural Network. Journal of Hydrologic Engineering, 14(9), 1035-1040. CR - Kartalopoulos, S.V. (1996). Understanding Neural Networks and Fuzzy Logic: Basic Concepts and Applications. IEEE Press, New York, p.205. CR - Kohonen T. (1988). An Introduction to Neural Computing: Neural Networks. 1, 3-6. CR - Okkan U. ve Mollamahmutoğlu A. (2010). Yiğitler Çayı Günlük Akımlarının Yapay Sinir Ağları ve Regresyon Analizi ile Modellenmesi. Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23, 33-48. CR - Öztemel, E. (2003). Yapay Sinir Ağları. Papatya Yayıncılık, İstanbul. CR - Seçkin N., Güven A. ve Yurtal R. (2010). Taşkın Debilerinin Yapay Sinir Ağları ile Modellenmesi: Batı Karadeniz Havzası Örneği. Ç.Ü. Müh. Mim. Fak. Dergisi 1-2(25), 45-57. CR - Terzi Ö. (2006). Yapay Sinir Ağları Metodu ile Eğirdir Gölü Su Sıcaklığının Tahmini. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 10(2), 297-302. CR - Toluk T. (2006). Akarsu Akımlarının Yapay Sinir Ağı Metotları Kullanılarak Modellenmesi. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, Sakarya. CR - Tuna H., Malkoç F., Öztürk D. ve Malkoç Y. (2009). Çoruh Havzasında Eksik Akım Verilerinin YSA Yöntemi ile Tamamlanması ve Hidrolojik Kuraklık Eğilimlerinin Belirlenmesi. 6. Hidroloji Kongresi, 265-280. UR - https://dergipark.org.tr/en/pub/utbd/issue//273689 L1 - https://dergipark.org.tr/en/download/article-file/254788 ER -