TY - JOUR TT - Structural Characterization and Photochemistry of 2-Chloro-6-Fluorobenzoic Acid Isolated in a Xenon Matrix AU - Kuş, Nihal PY - 2017 DA - June DO - 10.18038/aubtda.289194 JF - Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering JO - AUJST-A PB - Eskisehir Technical University WT - DergiPark SN - 1302-3160 SP - 315 EP - 322 VL - 18 IS - 2 KW - 2-Chloro-6-fluorobenzoic acid KW - Matrix isolation spectra KW - DFT(B3LYP) calculations KW - FTIR spectroscopy KW - 1-Chloro-3-fluorobenzene KW - UV-induced photolysis N2 - 2-Chloro-6-fluorobenzoic acid (ClFBA) was studied by low temperature solidstate FTIR spectroscopy in a Xe matrix and complemented by DFT(B3LYP)/6-311++G(d,p)calculations. The ClFBA molecule exists in three different conformers,according to the theoretical calculations. The second and third conformers (II, III) are higher in energy than the most stable conformer (I) by ca. 17 kJ mol-1, and bear a trans carboxylic acid moiety, while form I has this group in the cisconformation. According to the energy data predicted theoretically only the conformerI was expected to be present in the cryogenicxenon matrix, a result that was confirmed experimentally. Attempts for in situ generation and detection of formsII and III by near-IR (2nOH; 6867 cm-1) excitation of conformer I indicated that in solid xenon, once produced, these conformerspromptly relax by tunneling to the most stable conformer. Laser UV (l = 235 nm) excitation of matrix-isolated ClFBA led to prompt decarboxylationof the compound, with production of CO2 and 1-chloro-3-fluorobenzene(ClFB), whose vibrational signatures could be doubtlessly identified in thespectra of the photolysed matrix. CR - [1] G. F. Mason, J. Am. Chem. Soc., 1905, 27, 613–614. CR - [2] C. C. Wilson, N. Shankland and A. J. Florence, J. Chem. Soc. Faraday Trans., 1996, 5051–5057. CR - [3] R. Betz and T. Gerber, Acta Cryst. E, 2011. 67, o1329. CR - [4] I. D. Reva and S. G. Stepanian, J. Mol. Struct., 1995, 349, 337–340. CR - [5] S. Nishino and M. Nakata, J. Phys. Chem. A, 2007, 111, 7041–7047. CR - [6] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta Jr, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision A.0.2, Gaussian, Inc., Wallingford CT, 2009. CR - [7] A. D. McLean and G. S. Chandler, J. Chem. Phys., 1980, 72, 5639–5648. CR - [8] A. D. Becke, Phys. Rev. A, 1988, 38, 3098–3100. CR - [9] C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785–789. CR - [10] S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200–1211. UR - https://doi.org/10.18038/aubtda.289194 L1 - https://dergipark.org.tr/en/download/article-file/309855 ER -