TY - JOUR TT - Effect of Impregnation Sequence during Synthesis Procedure on Performances of Bimetallic Ni-Co Catalysts in Dry Reforming of Methane AU - Arbağ, Hüseyin PY - 2017 DA - April Y2 - 2017 DO - 10.17482/uumfd.305187 JF - Uludağ Üniversitesi Mühendislik Fakültesi Dergisi JO - UUJFE PB - Bursa Uludağ University WT - DergiPark SN - 2148-4155 SP - 39 EP - 52 VL - 22 IS - 1 KW - Metanın kuru reformlanma reaksiyonu KW - Mezogözenekli alümina KW - Nikel KW - Kobalt KW - Bimetalik. N2 - In this study,mesoporous alumina supported bimetallic Ni-Co catalysts were synthesized usingsequential impregnation method. The synthesized catalysts were tested in dryreforming of methane at 750 oC. Before and/or after activity test, N2adsorption/desorption, XRD, TPR, SEM/EDX, and TG/DT analyses were performed forthe catalysts. TPR analysis showed that impregnation sequence of Ni and Cometals effects reducibility of the metal in the structure of the catalysts. Itwas shown that impregnation sequence of Ni-Co bimetallic catalysts significantlyeffects the reducibility of metals in the structure and accordingly thecatalytic performance of these catalysts. It was found that cobalt was morereducible in the catalyst which was prepared by impregnation of Ni firstfollowed by impregnation of Co. Co@Ni@SGA catalyst prepared this way showedmore stable and high catalytic activity. Bimetallic Ni-Co catalysts showed highactivity with a high resistance to coke formation, in dry reforming of methane.Amount of coke formation (3.6% by wt) over Co@Ni@SGA catalyst (which showedhigher activity in dry reforming of methane) was higher than the amount of coke(2.1% by wt) over Ni@Co@SGA catalyst. H2/CO ratio in product streamwas obtained as 0.78. CR - Alipour, Z., Rezaei, M., Meshkani, F. (2014) Effect of Alkaline Earth Promoters (MgO, CaO, and BaO) on the Activity and Coke Formation of Ni Catalysts Supported on Nanocrystalline Al2O3 in Dry Reforming of Methane, Journal of Industrial and Engineering Chemistry, 20, 2858–2863. doi:10.1016/j.jiec.2013.11.018 CR - Arbağ, H., Yasyerli, S., Yasyerli, N., Dogu, G. (2010) Activity And Stability Enhancement of Ni-MCM-41 Catalysts by Rh Incorporation for Hydrogen from Dry Reforming of Methane, International Journal of Hydrogen Energy, 35 (6), 2296-2304. doi:10.1016/j.ijhydene.2009.12.109 CR - Arbağ, H., Yasyerli, S., Yasyerli, N., Dogu, T., Dogu, G. (2013) Coke Minimization in Dry Reforming of Methane by Ni Based Mesoporous Alumina Catalysts Synthesized Following Different Routes: Effects of W and Mg, Topics in Catalysis, 56, 1695-1707. doi: 10.1007/s11244-013-0105-3 CR - Arbağ, H., Yasyerli, S. ,Yasyerli, N., Dogu, G., Dogu, T., Črnivec, I.G.O., Pintar, A. (2015) Coke Minimization During Conversion of Biogas to Syngas by Bimetallic Tungsten−Nickel Incorporated Mesoporous Alumina Synthesized by the One-Pot Route, Industrial & Engineering Chemistry Research, 54, 2290-2301. doi: 10.1021/ie504477t CR - Arbağ, H., Yasyerli, S., Yasyerli, N., Dogu, G., Dogu, T. (2016) Enhancement of catalytic performance of Ni based mesoporous alumina by Co incorporation in conversion of biogas to synthesis gas, Applied Catalysis B: Environmental, 198, 254–265. doi:10.1016/j.apcatb.2016.05.064 CR - Bezemer G.L., Radstake P.B., Koot V., van Dillen A.J., Geus J.W., de Jong K.P. (2006) Preparation of Fischer–Tropsch cobalt catalysts supported on carbon nanofibers and silica using homogeneous deposition-precipitation, Journal of Catalysis, 237, 291–302. doi:10.1016/j.jcat.2005.11.015 CR - Chu, W., Chernavskii, P.A., Gengembre, L., Pankina, G.A., Fongarland, P., Khodakov, A.Y. (2007) Cobalt species in promoted cobalt alumina-supported Fischer–Tropsch catalysts, Journal of Catalysis, 252, 215–230. doi:10.1016/j.jcat.2007.09.018 CR - Djinovic, P., Crnivec, I.G., Erjavec, B., Pintar, A. (2012) Influence of Active Metal Loading and Oxygen Mobility on Coke-Free Dry Reforming of Ni-Co Bimetallic Catalysts, Applied Catalysis B: Environmental, 125, 259-270. doi:10.1016/j.apcatb.2012.05.049 CR - Fan, M.S., Abdullah, A.Z., Bhatia, S. (2010) Utilization of Greenhouse Gases Through Carbon Dioxide Reforming of Methane over Ni–Co/MgO–ZrO2: Preparation, Characterization and Activity Studies, Applied Catalysis B: Environmental, 100, 365-377. doi:10.1016/j.apcatb.2010.08.013 CR - Gündüz, S., Dogu, T. (2015) Hydrogen by steam reforming of ethanol over Co–Mg incorporated novel mesoporous alumina catalysts in tubular and microwave reactors, Applied Catalysis B: Environmental, 168, 497–508. doi:10.1016/j.apcatb.2015.01.006 CR - Hou, Z., Chen, P., Fang, H., Zheng, X., Yashima, T. (2006) Production of Synthesis Gas via Methane Reforming with CO2 on Noble Metals and Small Amount of Noble-(Rh-) Promoted Ni Catalysts, International Journal of Hydrogen Energy, 31, 555-561. doi:10.1016/j.ijhydene.2005.06.010 CR - Jafarbegloo, M., Tarlani, A., Mesbah, A.W., Sahebdelfar, S. (2015) Thermodynamic Analysis of Carbon Dioxide Reforming of Methane and Its Practical Relevance, International Journal of Hydrogen Energy, 40, 2445-2451. doi:10.1016/j.ijhydene.2014.12.103 CR - Joo, O., Jung, K. (2002) CH4 Dry Reforming on Alumina-Supported Nickel Catalyst, Bulletin of the Korean Chemical Society, 23-8, 1149-1153. doi:10.5012/bkcs.2002.23.8.1149 CR - Kim, P., Kim, Y., Kim, H., Song, I.K., Yi, J. (2004) Synthesis and Characterization of Mesoporous Alumina with Nickel Incorporated for Use in The Partial Oxidation of Methane into Synthesis Gas, Applied Catalysis A: General, 272, 157–166. doi:10.1016/j.apcata.2004.05.055 CR - Lapp, H.M., Schulte, D.D., Sparling, A.B., Buchanan, L.C. (1975) Methane Production from Animal Wastes. I. Fundamental Considerations, Canadian Agricultural Engineering, 17(2), 97-102. CR - Liu, D., Lau, R., Borgna, B., Yang, Y. (2009) Carbon Dioxide Reforming of Methane to Synthesis Gas over Ni-MCM-41 Catalysts, Applied Catalysis A: General, 358, 110–118. doi:10.1016/j.apcata.2008.12.044 CR - Luisetto, I., Tuti, S., Bartolomeo, E.D. (2012) Co and Ni Supported on CeO2 as Selective Bimetallic Catalyst for Dry Reforming of Methane, International Journal of Hydrogen Energy, 37, 15992-15999. doi:10.1016/j.ijhydene.2012.08.006 CR - Luyben, W.L. (2016) Control of Parallel Dry Methane and Steam Methane Reforming Processes For Fischer–Tropsch Syngas, Journal of Process Control, 39, 77–87. doi:10.1016/j.jprocont.2015.11.007 CR - Niesz, K., Yang, P., Somorjai, G.A. (2005) Sol-gel Synthesis of Ordered Mesoporous Alumina, Chemical Communications, 15, 1986-1987. doi: 10.1039/b419249d CR - Shimura, K., Miyazawa, T., Hanaoka, T., Hirata, S. (2015) Fischer–Tropsch synthesis over alumina supported bimetallic Co–Ni catalyst: Effect of impregnation sequence and solution, Journal of Molecular Catalysis A: Chemical, 407, 15–24. doi:10.1016/j.molcata.2015.06.013 CR - Sokolov, S., Kondrotenko, V.E., Pohl, M., Barkschat, A., Rodemerck, U. (2012) Stable Low-Temperature Dry Reforming of Methane over Mesoporous La2O3-ZrO2 Supported Ni Catalyst, Applied Catalysis B: Environmental, 113-114, 19-30. doi:10.1016/j.apcatb.2011.09.035 CR - Yasyerli, S., Filizgok, S., Arbağ, H., Yasyerli, N., Dogu, G. (2011) Ru Incorporated Ni-MCM-41 Mesoporous Catalysts for Dry Reforming of Methane: Effects of Mg Addition, Feed Composition and Temperature, International Journal of Hydrogen Energy, 36, 4863-4874. doi:10.1016/j.ijhydene.2011.01.120 CR - Yuan, Q., Yin, A., Luo, C., Sun, L., Zhang, Y., Duan, W., Liu, H., Yan, C. (2008) Facile Synthesis for Ordered Mesoporous -Aluminas with High Thermal Stability, Journal of American Chemical Society, 130, 3465-3472. doi:10.1021/ja0764308 CR - Zonetti, P.C., Gaspar, A.B., Mendes, F.M.T., Sobrinho, E.V., Sousa-Aguiar, E.F., Appel, L.G. (2010) Fischer–Tropsch Synthesis and the Generation of DME in Situ, Fuel Processing Technology, 91, 469–475. doi:10.1016/j.fuproc.2009.12.006 UR - https://doi.org/10.17482/uumfd.305187 L1 - https://dergipark.org.tr/en/download/article-file/293631 ER -