TY - JOUR T1 - The effects of elastic supports on nonlinear vibrations of a slightly curved beam TT - ELASTİK MESNETLERİN HAFİFÇE EĞRİ BİR KİRİŞİN NONLİNEER TİTREŞİMLERİNE ETKİLERİ AU - Sarıgül, Murat PY - 2018 DA - August Y2 - 2018 DO - 10.17482/uumfd.315108 JF - Uludağ Üniversitesi Mühendislik Fakültesi Dergisi JO - UUJFE PB - Bursa Uludağ University WT - DergiPark SN - 2148-4155 SP - 255 EP - 274 VL - 23 IS - 2 LA - en AB - In this study, nonlinear vibrations of a slightlycurved beam having arbitrary rising function are handled. The beam isrestricted in longitudinal direction using elastic supports on both ends.Sag-to-span ratio of the beam, which is assumed to have sinusoidal curvaturefunction at the beginning, is taken as 1/10. Beam being of Euler-Bernoulli typerests on Winkler elastic foundation and carries an arbitrarily placedconcentrated mass. Equations of motion are obtained by using HamiltonPrinciple. Cubic and quadratic nonlinear terms have been aroused at themathematical model because of the foundation and the beam's elongation. TheMethod of Multiple Scales (MMS), a perturbation technique, is used to solve theequations of motion analytically. The primary resonance case is taken intoaccount during steady-state vibrations. The natural frequencies are obtainedexactly for different control parameters such as supports' types, locations ofthe masses and linear coefficient of foundation. Frequency-amplitude and frequency-responsegraphs are drawn by using amplitude-phase modulation equations. KW - Nonlinear vibrations KW - Slightly curved beam KW - Elastic supports KW - Elastic foundation. N2 - Bu çalışmada, keyfi başlangıçfonksiyonuna sahip hafifçe eğri bir kirişin lineer olmayan titreşimleri elealınmaktadır. Her iki ucundan elastik mesnetler kullanılarak kiriş, boyunayönünde kısıtlanmıştır. Başlangıçta sinüsoidal eğrilik fonksiyonuna sahip olduğuvarsayılan kiriş için, ulaşılan eğrilik yüksekliğinin izdüşüme oranı 1/10alınmaktadır. Euler-Bernoulli tipinde olan kiriş Winkler elastik zemini üzerineoturmakta ve üzerinde keyfi olarak yerleştirilmiş kütleler taşımaktadır.Hamilton prensibi kullanılarak hareket denklemleri elde edilmiştir. Zeminden vekiriş uzamasından dolayı matematiksel modelde kübik ve quadratik lineer olmayanterimler ortaya çıkmaktadır. Hareket denklemlerini analitik olarak çözümlemekiçin bir Pertürbasyon tekniği olan Çok Ölçekli Metod(MMS) kullanılmaktadır.Geçici-durum titreşimleri süresince baskın rezonans durumu dikkatealınmaktadır. Mesnetlerin tipleri, kütlelerin konumları ve zeminin lineerbileşeni gibi farklı mukayese parametreleri için doğal frekanslar elde edilmektedir.Genlik-faz modülasyon denklemleri kullanılarak frekans-genlik ve frekans-cevapgrafikleri çizilmiştir. CR - Abe, A. (2006) On non-linear analyses of continuous systems with quadratic and cubic non-linearities, Non-linear Mechanics, 41, 873-879. CR - Adessi, D., Lacarbonara, W. and Paolone, A. (2005) Free in-plane vibrations of highly buckled beams carrying a lumped mass, Acta Mechanica. doi: 10.1007/s00707-005-0259-6 CR - Bayat, R., Jafari, A.A. and Rahmani, O. (2015) Analytical solution for free vibration of laminated curved beam with magnetostrictive Layers, International Journal of Applied Mechanics, 7(3). doi: 10.1142/S1758825115500507 CR - Carrera, E., Giunta, G. and Petrolo, M. (2011) Beam structures: Classical and advanced theories, Wiley. CR - Chen, L.W., Shen, G.S. (1998) Vibration and buckling of initially stressed curved beams, Journal of Sound and Vibrations, 215 (3), 511-526. CR - Chidamparam, P., Leissa,A.W. (1993) Vibrations of planar curved beams, rings, and arches, Applied Mechanics Reviews, 46(9), 467-483. doi:10.1115/1.3120374 CR - Ecsedi, I. and Dluhi, K. (2005) A linear model for the static and dynamic analysis of non-homogeneous curved beams, Applied Mathematical Modelling, 29, 1211-1231. CR - Ghayesh, M.H. (2012) Nonlinear dynamic response of a simply supported Kelvin-Voigt viscoelastic beam, additionally supported by a nonlinear spring, Nonlinear Analysis Real World Applications, 13, 1319-1333. CR - Goncalves, P.J.P., Brennan, M.J. and Elliott, S.J. (2007) Numerical evaluation of high-order modes of vibration in uniform Euler–Bernoulli beams, Journal of Sound and Vibrations, 301, 1035–1039. CR - Hajianmaleki, M. and Qatu, M.S. (2013) Vibrations of straight and curved composite beams: A review, Composite Structures, 100, 218-232. CR - Huang, D.T., Chen, D.K. (2007) Dynamic characteristics of a structure with multiple attachments: A receptance approach, Journal of Sound and Vibrations, 307, 941-952. CR - Jin, G., Ye ,T. and Su, Z. (2017) Elasticity solution for vibration of 2-D curved beams with variable curvatures using a spectral-sampling surface method, International Journal of Numerical Methods in Engineering. doi: 10.1002/nme.5501 CR - Kelly, S.G. and Srinivas, S. (2009) Free vibrations of elastically connected stretched beams, Journal of Sound and Vibrations, 326, 883-893. CR - Kiani, K. (2010) A meshless approach for free transverse vibration of embedded single-walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect, International Journal of Mechanical Sciences, 52, 1343–1356. CR - Kil, H.-G., Seo, S., Hong, S.-Y., Lee, C. (2014) Energy flow models for the out-of-plane vibration of horizontally curved beams, The Journal of the Acoustical Society of America, 136, 2141, doi: 10.1121/1.4899727 CR - Kumar, A., Patel, B.P. (2016) Experimental study on nonlinear vibrations of fixed-fixed curved beams, Curved and Layered Structures, 3(1),189–201. CR - Lacarbonara, W., Arafat, H. N., Nayfeh, A. H. (2005) Nonlinear interactions in imperfect beams at veering, Non-Linear Mechanics, 40, 987-1003. CR - Lee, B.K., Park, K.K., Lee, T.E., Yoon, H.M.(2014) Free vibrations of horizontally curved beams with constant volume, KSCE Journal of Civil Engineering, 18(1), 199-212. doi:10.1007/s12205-014-0356-y CR - Lee, Y.Y., Poon, W.Y. and Ng, C.F. (2006) Anti-symmetric mode vibration of a curved beam subject to auto parametric excitation, Journal of Sound and Vibrations, 290, 48-64. CR - Librescu, L. and Song, O. (2006) Thin-walled composite beams: Theory and application (Solid Mechanics and Its Applications), Springer. CR - Lin, S.M.(1998) Exact solutions for extensible circular curved Timoshenko beams with nonhomogeneous elastic boundary conditions, Acta Mechanica, 130, 67-79. CR - Leissa, A.W. and Qatu, M.S.(2011) Vibrations of Continuous Systems, McGraw-Hill. CR - Lestari, W. and Hanagud, S.(2001) Nonlinear vibration of buckled beams: some exact solutions, International Journal of Solids and Structures, 38, 4741-4757. CR - Motaghian, S.E., Mofid, M. and Alanjari, P. (2011) Exact solution to free vibration of beams partially supported by an elastic foundation, Scientia Iranica A., 18 (4), 861-866. CR - Nayfeh, A.H. and Mook, D.T. (1979), Nonlinear Oscillations, Willey, New-York. CR - Nayfeh, A.H., Lacarbonara, W. and Chin, C.-H. (1999) Nonlinear normal modes of buckled beams:Three-to-one and one-to-one Internal Resonances, Nonlinear Dynamics, 18,253-273. CR - Oz, H.R., Pakdemirli, M., Ozkaya, E. and Yılmaz, M. (1998) Nonlinear vibrations of a slightly curved beam resting on a nonlinear elastic foundation, Journal of Sound and Vibrations, 212(2), 295-309. CR - Ozkaya, E., Pakdemirli, M. and Oz, H.R. (1997) Nonlinear vibrations of beam-mass system under different boundary conditions,Journal of Sound and Vibrations, 199(4), 679-696. CR - Ozkaya, E., Sarigul, M. and Boyaci H. (2009) Nonlinear transverse vibrations of a slightly curved beam carrying a concentrated mass, Acta Mechanica Sinica, 25(6), 871-882. CR - Ozkaya, E., Sarigul, M. and Boyaci H. (2010) Nonlinear transverse vibrations of a slightly curved beam carrying multiple concentrated masses: primary resonance, 2nd International Symposium on Sustainable Development, Sarajevo, Bosnia and Herzegovina. CR - Ozkaya, E., Sarigül, M. and Boyaci, H. (2016) Nonlinear transverse vibrations of a slightly curved beam resting on multiple springs, International Journal of Acoustic and Vibrations, 21(4), 379-391. CR - Ozyigit, H.A., Yetmez, M.,and Uzun, U. (2017) Out-of-Plane Vibration of Curved Uniform and Tapered Beams with Additional Mass, Mathematical Problems in Engineering, Article ID 8178703, doi: 10.1155/2017/8178703 CR - Rao, G.V., Saheb, K.M. and Janardhan, G.R.(2006) Fundamental frequency for large amplitude vibrations of uniform timoshenko beams with central point concentrated mass using coupled displacement field method, Journal of Sound and Vibrations, 298, 221-232. CR - Rao, S.S.(2007) Vibration of Continuous Systems, New Jersey: John Wiley & Sons. CR - Reis,M. and Iida, F. (2014) An energy-efficient hopping robot based on free vibration of a curved beam, IEEE/ASME Transactions on Mechatronics, 19(1), 300-311. doi: 10.1109/TMECH.2012.2234759 CR - Rehfield, L.W. (1974) Nonlinear flexural oscillation of shallow arches, American Institute of Aeronautics and Astronautics Journal, 12, 91-93. CR - Sari, G. and Pakdemirli, M. (2013) Vibrations of a slightly curved microbeam resting on an elastic foundation with nonideal boundary conditions, Mathematical Problems in Engineering. doi: 10.1155/2013/736148 CR - Sathyamoorthy, M. (1997) Nonlinear Analysis of Structures, CRC Press. CR - Sato, M., Kanie, S. and Mikami, T. (2008) Mathematical analogy of a beam on elastic supports as a beam on elastic foundation, Applied Mathematical Modelling, 32, 688-699. CR - Shi, Z., Yao, X. , Pang, F., and Wang, Q. (2017) An exact solution for the free-vibration analysis of functionally graded carbon-nanotube-reinforced composite beams with arbitrary boundary conditions, Science Reports; 7: 12909. CR - Singh, P.N., Ali, S.M.J. (1975) Nonlinear vibration of a moderately thick shallow arches, Journal of Sound and Vibrations, 41, 275-282. CR - Tadi Beni, Y., Koochi, A. and Abadyan, M. (2011) Theoretical study of the effect of Casimir force, elastic boundary conditions and size dependency on the pull-in instability of beam-type NEMS, Physica E. CR - Tien, W.M., Sri Namachchivaya, N. and Bajaj, A.K. (1994) Non-linear dynamics of a shallow arch under periodic excitation-I. 1:2 internal resonance, International Journal of Mechanics, 29, 349-366. CR - Ugural, A.C. (2010), Stresses in Beams, Plates, and Shells, 3rd Edition ,CRC Press. CR - Wang, D., Zhijun, S. ,Wei, L., Meilong, C., Siyuan, L., Shidan, L. (2016) In-plane vibration analysis of phononic crystal curved beams,Noise Control Engineering Journal, 64(5), 658-667 CR - Wang, L., Ma, J., Li, L., and Peng, J. (2013) Three-to-one resonant responses of inextensional beams on the elastic foundation, Journal of Vibration and Acoustics, 135(1). doi: 10.1115/1.40079 CR - Wiedemann, S.M.(2007) Natural frequencies and mode shapes of arbitrary beam structures with arbitrary boundary conditions, Journal of Sound and Vibrations, 300, 280–291. CR - Wu, J.-S., Chen, C.-T. (2008) A continuous-mass TMM for free vibration analysis of a non-uniform beam with various boundary conditions and carrying multiple concentrated elements, Journal of Sound and Vibrations, 311, 1420-1430. CR - Wu, J.-S. and Chiang, L.-K. (2004) Dynamic analysis of an arch due to a moving load, Journal of Sound and Vibration, 269, 511–534 CR - Xiuchang, H., Hongxing, H., Yu, W. and Zhipeng, D. (2013) Research on wave mode conversion of curved beam structures by the Wave approach, Journal of Vibration and Acoustics, 135 (3). doi:10.1115/1.4023817 UR - https://doi.org/10.17482/uumfd.315108 L1 - https://dergipark.org.tr/en/download/article-file/555587 ER -