TY - JOUR TT - Estimating Wind Energy Potential by Artificial Neural Networks Method AU - Şenol, Ümit AU - Musayev, Zabit PY - 2017 DA - July JF - Bilge International Journal of Science and Technology Research JO - bilgesci PB - Kutbilge Akademisyenler Derneği WT - DergiPark SN - 2651-401X SP - 23 EP - 31 VL - 1 IS - 1 KW - Rüzgar enerjisi KW - Rüzgar santrali KW - Rüzgar hızı KW - Yapay sinir ağı N2 - In thisstudy, wind energy potential estimation is made by creating various windturbines and artificial neural networks (YSA) models. The wind speed data to beused in the model was used during the test phase, while the output powers fromdifferent types of wind turbines were used during the training phase. It hasbeen understood that the predictions made by the model created in theregression curves that emerged after the application are reliable andconsistent. According to the estimation results, it is seen that the selectedzone has very good wind potential and high quality energy production can beachieved with high quality turbines. Moreover, it has been revealed that YSAcan easily use alternatives in wind energy applications in the days when theelectricity energy needs of the people in the energy sector and the decisionmakers are constantly increasing. CR - Yağcı E., Rüzgar Hızı Yükseltmelerinde Kullanılan Farklı Yöntemlerin Karşılaştırılması ve Hata Analizleri, Yüksek Lisans Tezi, İstanbul Üniversitesi, Enerji Bilim ve Teknoloji Anabilim Dalı, Enerji Bilim Ve Teknoloji Programı, İstanbul, 2013. CR - Wai, R., J., Wang, W., H., Lin, C., Y., High- Performance Stand-Alone Photovoltaic Generation System, IEEE Transactions On Industrial Electronics, 55(1),240-250, 2008. CR - A. K. Azad, M. G. Rasul, R. Islam, and I. R. Shishir, Analysis of Wind Energy Prospect for Power Generation by Three Weibull Distribution Methods, Energy Procedia, 75, 722-727, 2015. CR - Elibüyük, U., Üçgül, İ., Yakut, A.K., Süleyman Demirel Üniversitesi Rüzgâr Enerjisi Santrali Projesi, Süleyman Demirel Üniversitesi Yekarum e-Dergi, 3(2), 22 – 32, 2016. CR - Da Rosa, A., V., Fundamentals of renewable Energy Processes, 3rd ed. Amsterdam, Netherlands, Elsevier, 2013. CR - İlkiliç, C., Türkbay, İ., Determination and utilization of wind energy potential for Turkey. Renewable and Sustainable Energy Reviews, 14(8), 2202-2207, 2010. CR - Türkiye rüzgar enerjisi istatistik raporu, Türkiye Rüzgar Enerjisi Birliği, http://www.tureb.com.tr, (25.02.2017). CR - Öztemel, E., Yapay Sinir Ağları, Papatya Yayıncılık, İstanbul. 2003. CR - Hamzaçebi, C., Yapay Sinir Ağları: Tahmin Amaçlı Kullanımı Matlab ve Neurosolution Uygulamalı, Ekin Yayınevi, Bursa, 2011. CR - Fausett, L., Fundamentals of Neural Networks: Architectures, Algorithms and Applications, Prentice Hall, New York, 1994. UR - https://dergipark.org.tr/en/pub/bilgesci/article/315824 L1 - https://dergipark.org.tr/en/download/article-file/324901 ER -