TY - JOUR T1 - Comparative analysis of various modelling techniques for emission prediction of diesel engine fueled by diesel fuel with nanoparticle additives AU - Tosun, Erdi AU - Ozgur, Tayfun AU - Ozgur, Ceyla AU - Ozcanli, Mustafa AU - Serin, Hasan AU - Aydin, Kadir PY - 2017 DA - March DO - 10.26701/ems.320490 JF - European Mechanical Science JO - EMS PB - Ahmet ÇALIK WT - DergiPark SN - 2587-1110 SP - 15 EP - 23 VL - 1 IS - 1 LA - en AB - In this study, emissions of compression ignition engine fueled by diesel fuel with nanoparticleadditives was modeled by regression analysis, artificial neural network (ANN) and adaptiveneuro fuzzy inference system (ANFIS) methods. Cetane number (CN) and engine speed(rpm) were selected as input parameters for estimation of carbon monoxide (CO), oxides ofnitrogen (NOx), and carbon dioxide (CO2) emissions. The results of estimation techniques werecompared with each other and they showed that regression analysis was not accurate enoughfor prediction. On the other hand, ANN and ANFIS modelling techniques gave more accurateresults with respect to regression analysis; linear and non-linear. Especially ANFIS models canbe suggested as estimation method with minimum error compared to experimental results. KW - Adaptive neuro fuzzy inference system KW - Artificial neural network KW - Diesel engine KW - Regression analysis CR - Tosun, E., Yilmaz, A.C., Ozcanli, M., and Aydin, K. (2014). Determination of effects of various alcohol additions into peanut methyl ester on performance and emission characteristics of a compression ignition engine. Fuel, vol. 126, pp. 38-43. 10.1016/j.fuel.2014.02.037 CR - Hussain, J., Palaniradja, K., Alagumurthi, N., and Manimaran, R. (2012). Effect of exhaust gas recirculation (EGR) on performance and emission characteristics of a three cylinder direct injection compression ignition engine. Alexandria Engineering Journal, vol. 51, no. 4, pp. 241-247. 10.1016/j.aej.2012.09.004 CR - Ismail, H.M., Ng, H.K., Queck, C.W., and Gan, S. (2012). Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends. Applied Energy, vol. 92, pp. 769-777. 10.1016/j.apenergy.2011.08.027 CR - Jahirul, M., Saidur, R., Masjuki, H., Kalam, M., and Rashid, M. (2009). Application of artificial neural networks (ANN) for prediction the performance of a dual fuel internal combustion engine. HKIE Transactions, vol. 16, no. 1, pp. 14-20. CR - Yusaf, T., Yousif, B., and Elawad, M. (2011). Crude palm oil fuel for diesel-engines: experimental and ANN simulation approaches. Energy, vol. 36, no. 8, pp. 4871-4878. 10.1016/j.energy.2011.05.032 CR - Shanmugam, P., Sivakumar, V., Murugesan, A., and Ilangkumaran, M. (2011). Performance and exhaust emissions of a diesel engine using hybrid fuel with an artificial neural network. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 33, no. 15, pp. 1440-1450. CR - Ghazikhani, M. and Mirzaii, I. (2011). Soot emission prediction of a waste-gated turbo-charged DI diesel engine using artificial neural network. Neural Computing and Applications, vol. 20, no. 2, pp. 303-308. 10.1007/s00521-010-0500-7 CR - Hosoz, M., Ertunc, H.M., Karabektas, M., and Ergen, G. (2013). ANFIS modelling of the performance and emissions of a diesel engine using diesel fuel and biodiesel blends. Applied Thermal Engineering, vol. 60, no. 1, pp. 24-32. 10.1016/j.applthermaleng.2013.06.040 CR - Isin, O. and Uzunsoy, E.U. (2013). Predicting the Exhaust Emissions of a Spark Ignition Engine Using Adaptive Neuro-Fuzzy Inference System. Arabian Journal for Science and Engineering, vol. 38, no. 12, pp. 3485-3493. 10.1007/s13369-013-0637-7 CR - Özkan, İ.A., Ciniviz, M., and Candan, F. (2015). Estimating Engine Performance and Emission Values Using ANFIS/ANFIS Kullanılarak Motor Performans ve Emisyon Değerleri Tahmini. International Journal of Automotive Engineering and Technologies, vol. 4, no. 1, pp. 63-67. CR - Al-Hinti, I., Samhouri, K., Al-Ghandoor, A., and Sakhrieh, A. (2009). The effect of boost pressure on the performance characteristics of a diesel engine: A neuro-fuzzy approach. Applied Energy, vol. 86, no. 1, pp. 113-121. 10.1016/j.apenergy.2008.04.015 CR - Özgür, T. (2011) Investigation of nanoparticle additives to the biodiesel and diesel fuels for improvement of the performance and exhaust emissions in a compression ignition engine, M.Sc. Thesis, Mechanical Engineering, Cukurova University. CR - Tabari, H., Kisi, O., Ezani, A., and Talaee, P.H. (2012). SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment. Journal of Hydrology, vol. 444, pp. 78-89. 10.1016/j.jhydrol.2012.04.007 CR - Bilgili, M., Sahin, B., Yasar, A., and Simsek, E. (2012). Electric energy demands of Turkey in residential and industrial sectors. Renewable and Sustainable Energy Reviews, vol. 16, no. 1, pp. 404-414. 10.1016/j.rser.2011.08.005 CR - Krauss, G., Kindangen, J.I., and Depecker, P. (1997). Using artificial neural networks to predict interior velocity coefficients. Building and Environment, vol. 32, no. 4, pp. 295-303. 10.1016/S0360-1323(96)00059-5 CR - Haykin, S.S., (2001) Neural networks: a comprehensive foundation. Tsinghua University Press. CR - Karimi, S., Kisi, O., Shiri, J., and Makarynskyy, O. (2013). Neuro-fuzzy and neural network techniques for forecasting sea level in Darwin Harbor, Australia. Computers & Geosciences, vol. 52, pp. 50-59. 10.1016/j.cageo.2012.09.015 CR - Jang, J.S.R. (1993). Anfis - Adaptive-Network-Based Fuzzy Inference System. IEEE Transactions on Systems Man and Cybernetics, vol. 23, no. 3, pp. 665-685. Doi 10.1109/21.256541 UR - https://doi.org/10.26701/ems.320490 L1 - https://dergipark.org.tr/en/download/article-file/313194 ER -