@article{article_331231, title={Conjugate Tangent Vectors, Asymptotic Directions, Euler Theorem and Dupin Indicatrix For k-Kinematic Surfaces}, journal={Sakarya University Journal of Science}, volume={22}, pages={1559–1566}, year={2018}, DOI={10.16984/saufenbilder.331231}, author={Kemer, Yasemin and Ata, Erhan}, keywords={Asymptotic direction, conjugate tangent vectors, Dupin indicatrix, Euler theorem}, abstract={<p class="MsoNormal" style="text-align:justify;"> <span style="font-size:11pt;"> <span style="font-size:12px;">In this study, we define the k-kinematic surface M </span> <sup> <span style="font-size:12px;">g </span> </sup> <span style="font-size:12px;"> which is obtained from a surface M on Euclidean 3-surface E </span> <sup> <span style="font-size:12px;">3 </span> </sup> <span style="font-size:12px;"> by applying rigid motion described by quaternions to points of M. Then we investigate and calculate for this surface some important concepts such as shape operator, asymptotic vectors, conjugate tangent vectors, Euler theorem and Dupin indicatrix which help to understand a surface differential geometrically well.  </span> </span> </p> <p> </p>}, number={6}, publisher={Sakarya University}