TY - JOUR T1 - Sol-jel yöntemi ile zirkonyum fosfat ve poli (etilen oksit) temelli polimer kompozit malzeme (ZRP/PEO) sentezi ve karakterizasyonu TT - Synthesis and characterization of zirconium phosphate and poly(ethylene oxide) based polymer composite AU - Çelik Küçük, Asuman AU - Demirkal, Emrah PY - 2018 DA - April Y2 - 2018 DO - 10.16984/saufenbilder.343027 JF - Sakarya University Journal of Science JO - SAUJS PB - Sakarya University WT - DergiPark SN - 2147-835X SP - 748 EP - 754 VL - 22 IS - 2 LA - tr AB - Bu çalışmada, sol-jelyöntemi ile tetraetil ortosilikat (TEOS) ön başlatıcısı varlığında zirkonyumfosfat (ZrP) ve Poli (etilen oksit)temelli ZrP/ PEO kompozit malzemesi üretilmiştir. Hazırlanan malzemenin yapısıX-ışını difraksiyonu (XRD) ve Fourier transform IR spektroskopisi (FTIR)yöntemleri ile incelenmiştir. Isısal özellikleri ise termal gravimetrik analiz(TGA) ile incelenmiştir. TGA analizinde, sentezlenen malzemenin 300 °C’e kadarkararlı olduğu bulunmuştur. Üretilen bu malzemenin maliyeti düşüktür, ayrıcaısıtıldığında 100 °C’nin üzerindeki sıcaklıklarda 300 °C ye kadar bozulmayauğramamaktadır. 300 °C’ye kadar olan ısısal kararlılığı ve su tutma kabiliyetisayesinde ZrP/PEO kompozit malzemesi, ara sıcaklık yakıt pillerindekullanılabilme potansiyeline sahiptir. KW - Zirkonyum ve Poli (etilen oksit) temelli kompozit malzeme KW - sol-jel N2 - In this study, by using tetraethyl orthosilicate (TEOS) asprecursor, a composite material based on the zirkonium phosphate and poly (ethyleneoksit) (PEO) polymer (ZrP / PEO) has been prepared through the sol-gel method.The characterisation of the obtained material has been carried out by usingflourer transform–infrared spectroscopy (FTIR) and X-ray diffraction (XRD)methods. Thermal properties have been investigated with thermal gravimetricanalyzing (TGA). It has been founded that ZrP/PEO polymer composite material isstable even up to 300 °C. Thanks to the thermal stability and water uptakeability, ZrP/PEO polymer composite is the promising candidate to be used as amedium temperature fuel-cell electrolyte material. CR - REFERENCES CR - [1] M. Rikukawa, K. Sanui, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Prog. Polym. Sci. vol.25 pp.1463-502, 2000. CR - [2] JD. Lichtenhan, Y.A. Otonari, MJ. Gan, Linear hybrid polymer building blocks: methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers and polymers, Macromolecules, vol.28 pp.8435-8437, 1995 CR - [3] E. S. Cozza, Q. Ma, O. Monticelli and P. Cebe, ‘Nanostructured nanofibers based on PBT and POSS: Effect of POSS on the alignment and macromolecular orientation of the nanofibers’, European Polymer Journal, vol. no. 49, pp. 33–40, 2013. CR - [4] R. He, Q. Li, G. Xiao and N.J. Bjerrum, ‘Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors’. Journal of Mebrane Science, vol. 226 pp.169-184, 2003. CR - [5] B. Bonnet, D.J. Jones, L. Tchicaya, G. Alberti, M. Casciola, L. Massinelli, B. Bauer, A. Peraio and E. Ramunni, ‘Hybrid organic-inorganic membranes for a medium temperature fuel cell’. Journal of New materials for Electrochemical Systems, vol.3, pp.87-92, 2000. CR - [6] Q. Li, R. He, J.Q. Jensen and N.J. Bjerrum, ‘Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 ◦C’. Chem Mater, vol.15 no.26, pp.4896–4915, 2003. CR - [7] M. Linlin, ‘Poly(2,5-benzimidazole)-silica nanocomposite membranes for high temperature proton exchange membrane fuel cell’, Journal of Membrane Science, vol.411-412, pp.91-98, 2012. CR - [8] W. Shuang, Z. Chengji, M. Wenjia, Z. Gang, L. Zhongguo, N. Jing, L. Mingyu,‘Preparation and properties of epoxy-cross-linked porous polybenzimidazole for high temperature proton exchange membrane fuel cells’, Journal of Membrane Science 411-412, 54-63, 2012 CR - [9] X. Meng and Z. Xian, ’Structure and thermal behavior of EPDM/POSS Composite Fiber Prepared by Electrospinning’, Journal of applied polymer science, DOI; 10.1002/app.38349. CR - [10] J. R. Stevens and B.E. Mellander, ‘Poly(ethylene oxide)-alkali metal-silver halide salt systems with high ionic conductivity at room temperature‘ Solid State Ionics, vol.21, pp.203-206, 1986. CR - [11] I. Honma, Y. Takeda, J.M. Bae, ‘Protonic conducting properties of sol-gel derived organic/inorganic nanocomposite membranes doped with acidic functional molecules’, Solid State Ionics, vol.120, pp.255–264, 1999. CR - [12] J. Xi and X. Tang, Nanocomposite polymer electrolyte based on Poly(ethylene oxide) and solid super acid for lithium polymer battery, Chemical Physics Letters, vol. 393, pp.271–276, 2004. CR - [13] A. Goni-Urtiaga, D. Presvytes and K. Scott., 'Solid acids as electrolyte materials for proton exchange membrane (PEM) electrolysis: Review' International Journal of Hydrogen Energy, vol.37, pp.3358-3372, 2012. CR - [14] A. Clearfield, 'Inorganic ion exchangers with layered structures', Annual Reviews Material Science, vol.14, pp.205, 1984 [15] S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, ‘Review of the proton exchange membranes for fuel cell applications’, International Journal Of Hydrogen Energy, vol.35, pp.9349-9384, 2010. UR - https://doi.org/10.16984/saufenbilder.343027 L1 - https://dergipark.org.tr/en/download/article-file/454594 ER -