TY - JOUR T1 - 8-125 MM KOLEMANİT CEVHERİNİN NIR/CCD OPTİK AYIRICI İLE ZENGİNLEŞTİRİLMESİ AU - Barış, Mustafa AU - Metin, Fazlı Cabbar AU - Karabulut, Nurtaç Kıymet AU - Özyücel, Fatih ÖZYÜCEL PY - 2018 DA - June DO - 10.29109/http-gujsc-gazi-edu-tr.344767 JF - Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji JO - GUJS Part C PB - Gazi University WT - DergiPark SN - 2147-9526 SP - 414 EP - 425 VL - 6 IS - 2 LA - tr AB - Optik ayırma teknolojisi gıda, maden ve geridönüşüm gibi alanlarda yaygın kullanımı olan ve malzemelerin kendine hasözelliklerine göre ayrımını sağlayan bir teknolojidir. Optik ayırma ilegeleneksel yöntemlerle yapılan ayrım işlemlerinden çok daha yüksek verimde vekapasitede zenginleştirme yapmak mümkündür. Temelde malzemelerin ürün ve atıkolarak sınıflandırılması veya farklı tür malzemelerin birbirindenayrıştırılmasının yapıldığı optik ayırma teknolojisi, insan gücüyle yapılmasıolanaksız ayrımların yapılmasını mümkün kılmaktadır. Renksel farklılıklarıbelirlenemeyen malzemelerin geniş spektral aralıklarda tanımlanması ile yüksekkapasitede ayrımının yapılmasında da verimli bir yöntem olarak özellikle tercihedilmektedir. Bu çalışmada Eti Maden İşletmeleri Genel Müdürlüğü, Bigadiç Borİşletme Müdürlüğü ocaklarından kil, tüf, kireç taşı gibi minerallerle birlikteçıkan 8-125 mm Simav Ana Damar (SAD), Simav Tali Damar (STD) ve Tülü Sarı (TS)kolemanit cevherleri, yakın kızılötesi (NIR) ve görünür ışık (CCD) kaynaklarıkullanılan optik ayıcılarla zenginleştirilmiştir. Çalışmalarda kırma, eleme veyıkama işlemlerinden geçirilen cevher 8-25 mm ve 25-125 mm tane boyutlarındazenginleştirme yapan iki optik ayırıcıya beslenmiş ve %22,10-39,30 B2O3tenör aralığında beslenen cevherlerde 3,90-9,10 birim zenginleştirmesağlanmıştır. %93’ün üzerinde verimle yapılan zenginleştirme sonrası%2,20-11,10 B2O3 tenör aralığında atık açığa çıkmıştır. KW - Optik ayırma KW - Kolemanit KW - Cevher zenginleştirme KW - Yakın kızılötesi ışık KW - Randıman CR - 1. Barry A.W., Tim N.M., Ore Sorting, Wills' Mineral Processing Technology 7th Edition, Burlington, A.B.D., 2006. CR - 2. Çelik C, Cevher zenginleştirmede gelişen teknolojiler: Optik zenginleştirme, Madencilik Türkiye, 4, 40-43, 2010. CR - 3. Petra T., Markus W, Thomas P., Industrial application for inline material sorting using hyperspectral imaging in the NIR range, Real-Time Imaging, 11, 99-107, 2005. CR - 4. Williams, P., Norris, K., Near-infrared Technology in the Agricultural and Food Industries, American Association of Cereal Chemists, Wisconsin, A.B.D., 1987. CR - 5. Sathish P.G., Subrata H., Atul T., A review on automated sorting of source-separated municipal solid waste for recycling, Waste Manage., 60, 56-74, 2017. CR - 6. Blasco J., Aleixos N., Gomez J., Molto E., Citrus sorting by identification of the most common defects using multispectral computer vision, J. Food Eng., 83, 384-393, 2007. CR - 7. Razieh P., Hamid R.G., Hadi S., Fariborz Z.N., Mohammad M.V., Study on an automatic sorting system for date fruits, J. Saudi Soc. Agric. Sci., 14, 83-90, 2015. 8. Silvia S., Daniela C., Federico M., Giuseppe B., Classification of oat and groat kernels using NIR hyperspectral imaging, Talanta, 103, 276-284, 2013. CR - 9. Mage I., Wol J.P., Bjerke F., Segtnan V., On-line sorting of meat trimmings into targeted fat categories, J. Food Eng., 115, 306-313, 2013. CR - 10. Murphy B., Zyl J., Domingo G., Underground preconcentration by ore sorting and coarse gravity separation, Narrow Vein Mining Conference , Perth-West Aust., 26-27 Mart, 2012. CR - 11. Batchelor A.R., Ferrari-John R.S., Katrib J., Udoudo O., Jones D.A., Dodds C., Kingman S.W., Pilot scale microwave sorting of porphyry copper ores: Part 1 – Laboratory investigations, Miner. Eng., 98, 303-327, 2016. CR - 12. Veerendra S., Rao S. M., Application of image processing and radial basis neural network techniques for ore sorting and ore classification, Miner. Eng., 18, 1412-1420, 2005. CR - 13. Tessier J., Duchesne C., Bartolacci G., A machine vision approach to on-line estimation of run-of-mine ore composition on conveyor belts, Miner. Eng., 20, 1129-1144, 2007. CR - 14. Lane G.R., Martin C., Pirard E., Techniques and applications for predictive metallurgy and ore characterization using optical image analysis, Miner. Eng., 21, 568-577, 2008. CR - 15. Snehamoy C., Ashis B., Biswajit S., Samir K.P., Image-based quality monitoring system of limestone ore grades, Comput. Ind., 61, 391-408, 2010. CR - 16. Sophie L., Godefroid D., David B., Eric P., Optical analysis of particle size and chromite liberation from pulp samples of a UG2 ore regrinding circuit, Miner. Eng., 24, 1340-1347, 2011. CR - 17. Joseph L., William S., Kai B., Jesus F., Larry M., Bridging the gap: Understanding the economic impact of ore sorting on a mineral processing circuit, Miner. Eng., 91, 92-99, 2016. CR - 18. Barış, M., Albayrak, S., Metin, F.C., Ünaldı, O., Tektaş, E., “Enrichment of 8-25 mm Colemanite Middlings by Optical Sorting”, XVII. International Boron, Borides and Related Materials, 255, İstanbul-Türkiye, 11-17 Eylül, 2011. CR - 19. Gannouni S., Noamen Rebai N., Abdeljaoued S., A spectroscopic approach to assess heavy metals contents of the mine waste of jalta and bougrine in the north of Tunisia, J. Geog. Inf. Syst, 4, 242-253, 2012. CR - 20. Cutmore N.G., Liu Y., Middleton A.G., Ore characterisation and sorting, Miner. Eng., 10 (4), 421-426, 1997. CR - 21. Cutmore N.G., Liu Y., Middleton A.G., On-line ore characterisation and sorting, Miner. Eng., 11 (9), 843-847, 1998. CR - 22. Derek P., George W.L., Donald L.S., ATR-FTIR spectroscopic studies of boric acid adsorption on hydrous ferric oxide, Geochim. Cosmochim. Acta, 67 (14), 2551–2560, 2003. CR - 23. Budak A., Gonen M., Extraction of boric acid from colemanite mineral by supercritical carbon dioxide, J. Supercrit. Fluids, 92, 183-189, 2014. UR - https://doi.org/10.29109/http-gujsc-gazi-edu-tr.344767 L1 - https://dergipark.org.tr/en/download/article-file/475986 ER -